2022-10-02 12:03:39 +00:00
import math
import torch
from torch import einsum
2022-10-08 13:33:39 +00:00
2022-10-02 12:03:39 +00:00
from ldm . util import default
from einops import rearrange
2022-10-07 07:17:52 +00:00
from modules import shared
2022-10-08 13:33:39 +00:00
try :
import xformers . ops
import functorch
xformers . _is_functorch_available = True
shared . xformers_available = True
except Exception :
print ( ' Cannot find xformers, defaulting to split attention. Try adding --xformers commandline argument to your webui-user file if you wish to install it. ' )
2022-10-02 12:03:39 +00:00
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1 ( self , x , context = None , mask = None ) :
h = self . heads
2022-10-08 05:47:02 +00:00
q_in = self . to_q ( x )
2022-10-02 12:03:39 +00:00
context = default ( context , x )
2022-10-08 05:47:02 +00:00
hypernetwork = shared . selected_hypernetwork ( )
hypernetwork_layers = ( hypernetwork . layers if hypernetwork is not None else { } ) . get ( context . shape [ 2 ] , None )
if hypernetwork_layers is not None :
k_in = self . to_k ( hypernetwork_layers [ 0 ] ( context ) )
v_in = self . to_v ( hypernetwork_layers [ 1 ] ( context ) )
else :
k_in = self . to_k ( context )
v_in = self . to_v ( context )
2022-10-02 12:03:39 +00:00
del context , x
2022-10-08 05:47:02 +00:00
q , k , v = map ( lambda t : rearrange ( t , ' b n (h d) -> (b h) n d ' , h = h ) , ( q_in , k_in , v_in ) )
del q_in , k_in , v_in
2022-10-02 12:03:39 +00:00
r1 = torch . zeros ( q . shape [ 0 ] , q . shape [ 1 ] , v . shape [ 2 ] , device = q . device )
for i in range ( 0 , q . shape [ 0 ] , 2 ) :
end = i + 2
s1 = einsum ( ' b i d, b j d -> b i j ' , q [ i : end ] , k [ i : end ] )
s1 * = self . scale
s2 = s1 . softmax ( dim = - 1 )
del s1
r1 [ i : end ] = einsum ( ' b i j, b j d -> b i d ' , s2 , v [ i : end ] )
del s2
2022-10-08 05:47:02 +00:00
del q , k , v
2022-10-02 12:03:39 +00:00
r2 = rearrange ( r1 , ' (b h) n d -> b n (h d) ' , h = h )
del r1
return self . to_out ( r2 )
# taken from https://github.com/Doggettx/stable-diffusion
def split_cross_attention_forward ( self , x , context = None , mask = None ) :
h = self . heads
q_in = self . to_q ( x )
context = default ( context , x )
2022-10-07 07:17:52 +00:00
hypernetwork = shared . selected_hypernetwork ( )
hypernetwork_layers = ( hypernetwork . layers if hypernetwork is not None else { } ) . get ( context . shape [ 2 ] , None )
if hypernetwork_layers is not None :
k_in = self . to_k ( hypernetwork_layers [ 0 ] ( context ) )
v_in = self . to_v ( hypernetwork_layers [ 1 ] ( context ) )
else :
k_in = self . to_k ( context )
v_in = self . to_v ( context )
k_in * = self . scale
2022-10-02 12:03:39 +00:00
del context , x
q , k , v = map ( lambda t : rearrange ( t , ' b n (h d) -> (b h) n d ' , h = h ) , ( q_in , k_in , v_in ) )
del q_in , k_in , v_in
r1 = torch . zeros ( q . shape [ 0 ] , q . shape [ 1 ] , v . shape [ 2 ] , device = q . device , dtype = q . dtype )
stats = torch . cuda . memory_stats ( q . device )
mem_active = stats [ ' active_bytes.all.current ' ]
mem_reserved = stats [ ' reserved_bytes.all.current ' ]
mem_free_cuda , _ = torch . cuda . mem_get_info ( torch . cuda . current_device ( ) )
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 * * 3
tensor_size = q . shape [ 0 ] * q . shape [ 1 ] * k . shape [ 1 ] * q . element_size ( )
modifier = 3 if q . element_size ( ) == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total :
steps = 2 * * ( math . ceil ( math . log ( mem_required / mem_free_total , 2 ) ) )
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64 :
max_res = math . floor ( math . sqrt ( math . sqrt ( mem_free_total / 2.5 ) ) / 8 ) * 64
raise RuntimeError ( f ' Not enough memory, use lower resolution (max approx. { max_res } x { max_res } ). '
f ' Need: { mem_required / 64 / gb : 0.1f } GB free, Have: { mem_free_total / gb : 0.1f } GB free ' )
slice_size = q . shape [ 1 ] / / steps if ( q . shape [ 1 ] % steps ) == 0 else q . shape [ 1 ]
for i in range ( 0 , q . shape [ 1 ] , slice_size ) :
end = i + slice_size
s1 = einsum ( ' b i d, b j d -> b i j ' , q [ : , i : end ] , k )
s2 = s1 . softmax ( dim = - 1 , dtype = q . dtype )
del s1
r1 [ : , i : end ] = einsum ( ' b i j, b j d -> b i d ' , s2 , v )
del s2
del q , k , v
r2 = rearrange ( r1 , ' (b h) n d -> b n (h d) ' , h = h )
del r1
return self . to_out ( r2 )
2022-10-07 02:21:49 +00:00
def xformers_attention_forward ( self , x , context = None , mask = None ) :
h = self . heads
q_in = self . to_q ( x )
context = default ( context , x )
2022-10-08 08:55:02 +00:00
hypernetwork = shared . selected_hypernetwork ( )
hypernetwork_layers = ( hypernetwork . layers if hypernetwork is not None else { } ) . get ( context . shape [ 2 ] , None )
if hypernetwork_layers is not None :
k_in = self . to_k ( hypernetwork_layers [ 0 ] ( context ) )
v_in = self . to_v ( hypernetwork_layers [ 1 ] ( context ) )
else :
k_in = self . to_k ( context )
v_in = self . to_v ( context )
2022-10-08 01:09:18 +00:00
q , k , v = map ( lambda t : rearrange ( t , ' b n (h d) -> b n h d ' , h = h ) , ( q_in , k_in , v_in ) )
2022-10-07 02:21:49 +00:00
del q_in , k_in , v_in
2022-10-08 01:09:18 +00:00
out = xformers . ops . memory_efficient_attention ( q , k , v , attn_bias = None )
2022-10-07 02:21:49 +00:00
2022-10-08 01:09:18 +00:00
out = rearrange ( out , ' b n h d -> b n (h d) ' , h = h )
2022-10-07 02:21:49 +00:00
return self . to_out ( out )
2022-10-02 12:03:39 +00:00
def cross_attention_attnblock_forward ( self , x ) :
h_ = x
h_ = self . norm ( h_ )
q1 = self . q ( h_ )
k1 = self . k ( h_ )
v = self . v ( h_ )
# compute attention
b , c , h , w = q1 . shape
q2 = q1 . reshape ( b , c , h * w )
del q1
q = q2 . permute ( 0 , 2 , 1 ) # b,hw,c
del q2
k = k1 . reshape ( b , c , h * w ) # b,c,hw
del k1
h_ = torch . zeros_like ( k , device = q . device )
stats = torch . cuda . memory_stats ( q . device )
mem_active = stats [ ' active_bytes.all.current ' ]
mem_reserved = stats [ ' reserved_bytes.all.current ' ]
mem_free_cuda , _ = torch . cuda . mem_get_info ( torch . cuda . current_device ( ) )
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
tensor_size = q . shape [ 0 ] * q . shape [ 1 ] * k . shape [ 2 ] * q . element_size ( )
mem_required = tensor_size * 2.5
steps = 1
if mem_required > mem_free_total :
steps = 2 * * ( math . ceil ( math . log ( mem_required / mem_free_total , 2 ) ) )
slice_size = q . shape [ 1 ] / / steps if ( q . shape [ 1 ] % steps ) == 0 else q . shape [ 1 ]
for i in range ( 0 , q . shape [ 1 ] , slice_size ) :
end = i + slice_size
w1 = torch . bmm ( q [ : , i : end ] , k ) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w2 = w1 * ( int ( c ) * * ( - 0.5 ) )
del w1
w3 = torch . nn . functional . softmax ( w2 , dim = 2 , dtype = q . dtype )
del w2
# attend to values
v1 = v . reshape ( b , c , h * w )
w4 = w3 . permute ( 0 , 2 , 1 ) # b,hw,hw (first hw of k, second of q)
del w3
h_ [ : , : , i : end ] = torch . bmm ( v1 , w4 ) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
del v1 , w4
h2 = h_ . reshape ( b , c , h , w )
del h_
h3 = self . proj_out ( h2 )
del h2
h3 + = x
return h3
2022-10-08 08:55:02 +00:00
2022-10-08 08:55:38 +00:00
def xformers_attnblock_forward ( self , x ) :
2022-10-08 08:55:02 +00:00
h_ = x
h_ = self . norm ( h_ )
q1 = self . q ( h_ ) . contiguous ( )
k1 = self . k ( h_ ) . contiguous ( )
v = self . v ( h_ ) . contiguous ( )
out = xformers . ops . memory_efficient_attention ( q1 , k1 , v )
out = self . proj_out ( out )
return x + out