60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
|
from modules.api.processing import StableDiffusionProcessingAPI
|
||
|
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
|
||
|
import modules.shared as shared
|
||
|
import uvicorn
|
||
|
from fastapi import FastAPI, Body, APIRouter
|
||
|
from fastapi.responses import JSONResponse
|
||
|
from pydantic import BaseModel, Field, Json
|
||
|
import json
|
||
|
import io
|
||
|
import base64
|
||
|
|
||
|
app = FastAPI()
|
||
|
|
||
|
class TextToImageResponse(BaseModel):
|
||
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||
|
parameters: Json
|
||
|
info: Json
|
||
|
|
||
|
|
||
|
class Api:
|
||
|
def __init__(self, txt2img, img2img, run_extras, run_pnginfo):
|
||
|
self.router = APIRouter()
|
||
|
app.add_api_route("/v1/txt2img", self.text2imgapi, methods=["POST"])
|
||
|
|
||
|
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
|
||
|
print(txt2imgreq)
|
||
|
p = StableDiffusionProcessingTxt2Img(**vars(txt2imgreq))
|
||
|
p.sd_model = shared.sd_model
|
||
|
print(p)
|
||
|
processed = process_images(p)
|
||
|
|
||
|
b64images = []
|
||
|
for i in processed.images:
|
||
|
buffer = io.BytesIO()
|
||
|
i.save(buffer, format="png")
|
||
|
b64images.append(base64.b64encode(buffer.getvalue()))
|
||
|
|
||
|
response = {
|
||
|
"images": b64images,
|
||
|
"info": processed.js(),
|
||
|
"parameters": json.dumps(vars(txt2imgreq))
|
||
|
}
|
||
|
|
||
|
|
||
|
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
|
||
|
|
||
|
|
||
|
|
||
|
def img2imgendoint(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def extrasendoint(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def pnginfoendoint(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def launch(self, server_name, port):
|
||
|
app.include_router(self.router)
|
||
|
uvicorn.run(app, host=server_name, port=port)
|