2022-10-17 07:02:08 +00:00
|
|
|
from inflection import underscore
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from pydantic import BaseModel, Field, create_model
|
|
|
|
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
|
|
|
import inspect
|
|
|
|
|
|
|
|
|
|
|
|
class ModelDef(BaseModel):
|
|
|
|
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
|
|
|
|
|
|
|
field: str
|
|
|
|
field_alias: str
|
|
|
|
field_type: Any
|
|
|
|
field_value: Any
|
|
|
|
|
|
|
|
|
|
|
|
class pydanticModelGenerator:
|
|
|
|
"""
|
2022-10-17 03:18:41 -04:00
|
|
|
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
|
|
|
source_data is a snapshot of the default values produced by the class
|
|
|
|
params are the names of the actual keys required by __init__
|
2022-10-17 07:02:08 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_name: str = None,
|
2022-10-17 03:18:41 -04:00
|
|
|
source_data: {} = {},
|
2022-10-17 07:02:08 +00:00
|
|
|
params: Dict = {},
|
|
|
|
overrides: Dict = {},
|
|
|
|
optionals: Dict = {},
|
|
|
|
):
|
|
|
|
def field_type_generator(k, v, overrides, optionals):
|
|
|
|
field_type = str if not overrides.get(k) else overrides[k]["type"]
|
|
|
|
if v is None:
|
|
|
|
field_type = Any
|
|
|
|
else:
|
|
|
|
field_type = type(v)
|
|
|
|
|
|
|
|
return Optional[field_type]
|
|
|
|
|
|
|
|
self._model_name = model_name
|
|
|
|
self._json_data = source_data
|
|
|
|
self._model_def = [
|
|
|
|
ModelDef(
|
|
|
|
field=underscore(k),
|
|
|
|
field_alias=k,
|
|
|
|
field_type=field_type_generator(k, v, overrides, optionals),
|
|
|
|
field_value=v
|
|
|
|
)
|
|
|
|
for (k,v) in source_data.items() if k in params
|
|
|
|
]
|
|
|
|
|
|
|
|
def generate_model(self):
|
|
|
|
"""
|
|
|
|
Creates a pydantic BaseModel
|
|
|
|
from the json and overrides provided at initialization
|
|
|
|
"""
|
|
|
|
fields = {
|
|
|
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
|
|
|
}
|
|
|
|
DynamicModel = create_model(self._model_name, **fields)
|
|
|
|
DynamicModel.__config__.allow_population_by_field_name = True
|
|
|
|
return DynamicModel
|
|
|
|
|
|
|
|
StableDiffusionProcessingAPI = pydanticModelGenerator("StableDiffusionProcessing",
|
|
|
|
StableDiffusionProcessing().__dict__,
|
2022-10-17 03:18:41 -04:00
|
|
|
inspect.signature(StableDiffusionProcessing.__init__).parameters).generate_model()
|