2022-09-16 22:18:30 +03:00
import math
import numpy as np
import skimage
import modules . scripts as scripts
import gradio as gr
from PIL import Image , ImageDraw
from modules import images , processing , devices
from modules . processing import Processed , process_images
from modules . shared import opts , cmd_opts , state
2022-09-22 23:44:22 +03:00
# https://github.com/parlance-zz/g-diffuser-bot
2022-09-16 22:18:30 +03:00
def expand ( x , dir , amount , power = 0.75 ) :
is_left = dir == 3
is_right = dir == 1
is_up = dir == 0
is_down = dir == 2
if is_left or is_right :
noise = np . zeros ( ( x . shape [ 0 ] , amount , 3 ) , dtype = float )
indexes = np . random . random ( ( x . shape [ 0 ] , amount ) ) * * power * ( 1 - np . arange ( amount ) / amount )
if is_right :
indexes = 1 - indexes
indexes = ( indexes * ( x . shape [ 1 ] - 1 ) ) . astype ( int )
for row in range ( x . shape [ 0 ] ) :
if is_left :
noise [ row ] = x [ row ] [ indexes [ row ] ]
else :
noise [ row ] = np . flip ( x [ row ] [ indexes [ row ] ] , axis = 0 )
x = np . concatenate ( [ noise , x ] if is_left else [ x , noise ] , axis = 1 )
return x
if is_up or is_down :
noise = np . zeros ( ( amount , x . shape [ 1 ] , 3 ) , dtype = float )
indexes = np . random . random ( ( x . shape [ 1 ] , amount ) ) * * power * ( 1 - np . arange ( amount ) / amount )
if is_down :
indexes = 1 - indexes
indexes = ( indexes * x . shape [ 0 ] - 1 ) . astype ( int )
for row in range ( x . shape [ 1 ] ) :
if is_up :
noise [ : , row ] = x [ : , row ] [ indexes [ row ] ]
else :
noise [ : , row ] = np . flip ( x [ : , row ] [ indexes [ row ] ] , axis = 0 )
x = np . concatenate ( [ noise , x ] if is_up else [ x , noise ] , axis = 0 )
return x
def get_matched_noise ( _np_src_image , np_mask_rgb , noise_q = 1 , color_variation = 0.05 ) :
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2 ( data ) :
if data . ndim > 2 : # has channels
out_fft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] , data . shape [ 2 ] ) , dtype = np . complex128 )
for c in range ( data . shape [ 2 ] ) :
c_data = data [ : , : , c ]
out_fft [ : , : , c ] = np . fft . fft2 ( np . fft . fftshift ( c_data ) , norm = " ortho " )
out_fft [ : , : , c ] = np . fft . ifftshift ( out_fft [ : , : , c ] )
else : # one channel
out_fft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] ) , dtype = np . complex128 )
out_fft [ : , : ] = np . fft . fft2 ( np . fft . fftshift ( data ) , norm = " ortho " )
out_fft [ : , : ] = np . fft . ifftshift ( out_fft [ : , : ] )
return out_fft
def _ifft2 ( data ) :
if data . ndim > 2 : # has channels
out_ifft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] , data . shape [ 2 ] ) , dtype = np . complex128 )
for c in range ( data . shape [ 2 ] ) :
c_data = data [ : , : , c ]
out_ifft [ : , : , c ] = np . fft . ifft2 ( np . fft . fftshift ( c_data ) , norm = " ortho " )
out_ifft [ : , : , c ] = np . fft . ifftshift ( out_ifft [ : , : , c ] )
else : # one channel
out_ifft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] ) , dtype = np . complex128 )
out_ifft [ : , : ] = np . fft . ifft2 ( np . fft . fftshift ( data ) , norm = " ortho " )
out_ifft [ : , : ] = np . fft . ifftshift ( out_ifft [ : , : ] )
return out_ifft
def _get_gaussian_window ( width , height , std = 3.14 , mode = 0 ) :
window_scale_x = float ( width / min ( width , height ) )
window_scale_y = float ( height / min ( width , height ) )
window = np . zeros ( ( width , height ) )
x = ( np . arange ( width ) / width * 2. - 1. ) * window_scale_x
for y in range ( height ) :
fy = ( y / height * 2. - 1. ) * window_scale_y
if mode == 0 :
window [ : , y ] = np . exp ( - ( x * * 2 + fy * * 2 ) * std )
else :
window [ : , y ] = ( 1 / ( ( x * * 2 + 1. ) * ( fy * * 2 + 1. ) ) ) * * ( std / 3.14 ) # hey wait a minute that's not gaussian
return window
def _get_masked_window_rgb ( np_mask_grey , hardness = 1. ) :
np_mask_rgb = np . zeros ( ( np_mask_grey . shape [ 0 ] , np_mask_grey . shape [ 1 ] , 3 ) )
if hardness != 1. :
hardened = np_mask_grey [ : ] * * hardness
else :
hardened = np_mask_grey [ : ]
for c in range ( 3 ) :
np_mask_rgb [ : , : , c ] = hardened [ : ]
return np_mask_rgb
width = _np_src_image . shape [ 0 ]
height = _np_src_image . shape [ 1 ]
num_channels = _np_src_image . shape [ 2 ]
np_src_image = _np_src_image [ : ] * ( 1. - np_mask_rgb )
np_mask_grey = ( np . sum ( np_mask_rgb , axis = 2 ) / 3. )
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
windowed_image = _np_src_image * ( 1. - _get_masked_window_rgb ( np_mask_grey ) )
windowed_image / = np . max ( windowed_image )
windowed_image + = np . average ( _np_src_image ) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
src_fft = _fft2 ( windowed_image ) # get feature statistics from masked src img
src_dist = np . absolute ( src_fft )
src_phase = src_fft / src_dist
noise_window = _get_gaussian_window ( width , height , mode = 1 ) # start with simple gaussian noise
noise_rgb = np . random . random_sample ( ( width , height , num_channels ) )
noise_grey = ( np . sum ( noise_rgb , axis = 2 ) / 3. )
noise_rgb * = color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range ( num_channels ) :
noise_rgb [ : , : , c ] + = ( 1. - color_variation ) * noise_grey
noise_fft = _fft2 ( noise_rgb )
for c in range ( num_channels ) :
noise_fft [ : , : , c ] * = noise_window
noise_rgb = np . real ( _ifft2 ( noise_fft ) )
shaped_noise_fft = _fft2 ( noise_rgb )
shaped_noise_fft [ : , : , : ] = np . absolute ( shaped_noise_fft [ : , : , : ] ) * * 2 * ( src_dist * * noise_q ) * src_phase # perform the actual shaping
brightness_variation = 0. # color_variation # todo: temporarily tieing brightness variation to color variation for now
contrast_adjusted_np_src = _np_src_image [ : ] * ( brightness_variation + 1. ) - brightness_variation * 2.
# scikit-image is used for histogram matching, very convenient!
shaped_noise = np . real ( _ifft2 ( shaped_noise_fft ) )
shaped_noise - = np . min ( shaped_noise )
shaped_noise / = np . max ( shaped_noise )
shaped_noise [ img_mask , : ] = skimage . exposure . match_histograms ( shaped_noise [ img_mask , : ] * * 1. , contrast_adjusted_np_src [ ref_mask , : ] , channel_axis = 1 )
shaped_noise = _np_src_image [ : ] * ( 1. - np_mask_rgb ) + shaped_noise * np_mask_rgb
matched_noise = shaped_noise [ : ]
return np . clip ( matched_noise , 0. , 1. )
class Script ( scripts . Script ) :
def title ( self ) :
return " Outpainting mk2 "
def show ( self , is_img2img ) :
return is_img2img
def ui ( self , is_img2img ) :
if not is_img2img :
return None
info = gr . HTML ( " <p style= \" margin-bottom:0.75em \" >Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8</p> " )
pixels = gr . Slider ( label = " Pixels to expand " , minimum = 8 , maximum = 256 , step = 8 , value = 128 )
mask_blur = gr . Slider ( label = ' Mask blur ' , minimum = 0 , maximum = 64 , step = 1 , value = 8 , visible = False )
direction = gr . CheckboxGroup ( label = " Outpainting direction " , choices = [ ' left ' , ' right ' , ' up ' , ' down ' ] , value = [ ' left ' , ' right ' , ' up ' , ' down ' ] )
noise_q = gr . Slider ( label = " Fall-off exponent (lower=higher detail) " , minimum = 0.0 , maximum = 4.0 , step = 0.01 , value = 1.0 )
color_variation = gr . Slider ( label = " Color variation " , minimum = 0.0 , maximum = 1.0 , step = 0.01 , value = 0.05 )
return [ info , pixels , mask_blur , direction , noise_q , color_variation ]
def run ( self , p , _ , pixels , mask_blur , direction , noise_q , color_variation ) :
initial_seed_and_info = [ None , None ]
process_width = p . width
process_height = p . height
p . mask_blur = mask_blur * 4
p . inpaint_full_res = False
p . inpainting_fill = 1
p . do_not_save_samples = True
p . do_not_save_grid = True
left = pixels if " left " in direction else 0
right = pixels if " right " in direction else 0
up = pixels if " up " in direction else 0
down = pixels if " down " in direction else 0
init_img = p . init_images [ 0 ]
target_w = math . ceil ( ( init_img . width + left + right ) / 64 ) * 64
target_h = math . ceil ( ( init_img . height + up + down ) / 64 ) * 64
if left > 0 :
left = left * ( target_w - init_img . width ) / / ( left + right )
2022-09-21 15:40:31 +03:00
2022-09-16 22:18:30 +03:00
if right > 0 :
right = target_w - init_img . width - left
if up > 0 :
up = up * ( target_h - init_img . height ) / / ( up + down )
if down > 0 :
down = target_h - init_img . height - up
init_image = p . init_images [ 0 ]
2022-09-21 15:40:31 +03:00
state . job_count = ( 1 if left > 0 else 0 ) + ( 1 if right > 0 else 0 ) + ( 1 if up > 0 else 0 ) + ( 1 if down > 0 else 0 )
2022-09-16 22:18:30 +03:00
def expand ( init , expand_pixels , is_left = False , is_right = False , is_top = False , is_bottom = False ) :
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
2022-09-21 15:40:31 +03:00
res_w = init . width + pixels_horiz
res_h = init . height + pixels_vert
process_res_w = math . ceil ( res_w / 64 ) * 64
process_res_h = math . ceil ( res_h / 64 ) * 64
img = Image . new ( " RGB " , ( process_res_w , process_res_h ) )
2022-09-16 22:18:30 +03:00
img . paste ( init , ( pixels_horiz if is_left else 0 , pixels_vert if is_top else 0 ) )
2022-09-21 15:40:31 +03:00
mask = Image . new ( " RGB " , ( process_res_w , process_res_h ) , " white " )
2022-09-16 22:18:30 +03:00
draw = ImageDraw . Draw ( mask )
draw . rectangle ( (
expand_pixels + mask_blur if is_left else 0 ,
expand_pixels + mask_blur if is_top else 0 ,
2022-09-21 15:40:31 +03:00
mask . width - expand_pixels - mask_blur if is_right else res_w ,
mask . height - expand_pixels - mask_blur if is_bottom else res_h ,
2022-09-16 22:18:30 +03:00
) , fill = " black " )
np_image = ( np . asarray ( img ) / 255.0 ) . astype ( np . float64 )
np_mask = ( np . asarray ( mask ) / 255.0 ) . astype ( np . float64 )
noised = get_matched_noise ( np_image , np_mask , noise_q , color_variation )
out = Image . fromarray ( np . clip ( noised * 255. , 0. , 255. ) . astype ( np . uint8 ) , mode = " RGB " )
target_width = min ( process_width , init . width + pixels_horiz ) if is_horiz else img . width
target_height = min ( process_height , init . height + pixels_vert ) if is_vert else img . height
crop_region = (
0 if is_left else out . width - target_width ,
0 if is_top else out . height - target_height ,
target_width if is_left else out . width ,
target_height if is_top else out . height ,
)
image_to_process = out . crop ( crop_region )
mask = mask . crop ( crop_region )
p . width = target_width if is_horiz else img . width
p . height = target_height if is_vert else img . height
p . init_images = [ image_to_process ]
p . image_mask = mask
latent_mask = Image . new ( " RGB " , ( p . width , p . height ) , " white " )
draw = ImageDraw . Draw ( latent_mask )
draw . rectangle ( (
expand_pixels + mask_blur * 2 if is_left else 0 ,
expand_pixels + mask_blur * 2 if is_top else 0 ,
2022-09-21 15:40:31 +03:00
mask . width - expand_pixels - mask_blur * 2 if is_right else res_w ,
mask . height - expand_pixels - mask_blur * 2 if is_bottom else res_h ,
2022-09-16 22:18:30 +03:00
) , fill = " black " )
p . latent_mask = latent_mask
proc = process_images ( p )
proc_img = proc . images [ 0 ]
if initial_seed_and_info [ 0 ] is None :
initial_seed_and_info [ 0 ] = proc . seed
initial_seed_and_info [ 1 ] = proc . info
out . paste ( proc_img , ( 0 if is_left else out . width - proc_img . width , 0 if is_top else out . height - proc_img . height ) )
2022-09-21 15:40:31 +03:00
out = out . crop ( ( 0 , 0 , res_w , res_h ) )
2022-09-16 22:18:30 +03:00
return out
img = init_image
if left > 0 :
img = expand ( img , left , is_left = True )
if right > 0 :
img = expand ( img , right , is_right = True )
if up > 0 :
img = expand ( img , up , is_top = True )
if down > 0 :
img = expand ( img , down , is_bottom = True )
res = Processed ( p , [ img ] , initial_seed_and_info [ 0 ] , initial_seed_and_info [ 1 ] )
if opts . samples_save :
images . save_image ( img , p . outpath_samples , " " , res . seed , p . prompt , opts . grid_format , info = res . info , p = p )
return res