99 lines
3.6 KiB
Python
99 lines
3.6 KiB
Python
|
from inflection import underscore
|
||
|
from typing import Any, Dict, Optional
|
||
|
from pydantic import BaseModel, Field, create_model
|
||
|
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||
|
import inspect
|
||
|
|
||
|
|
||
|
class ModelDef(BaseModel):
|
||
|
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||
|
|
||
|
field: str
|
||
|
field_alias: str
|
||
|
field_type: Any
|
||
|
field_value: Any
|
||
|
|
||
|
|
||
|
class pydanticModelGenerator:
|
||
|
"""
|
||
|
Takes source_data:Dict ( a single instance example of something like a JSON node) and self generates a pythonic data model with Alias to original source field names. This makes it easy to popuate or export to other systems yet handle the data in a pythonic way.
|
||
|
Being a pydantic datamodel all the richness of pydantic data validation is available and these models can easily be used in FastAPI and or a ORM
|
||
|
|
||
|
It does not process full JSON data structures but takes simple JSON document with basic elements
|
||
|
|
||
|
Provide a model_name, an example of JSON data and a dict of type overrides
|
||
|
|
||
|
Example:
|
||
|
|
||
|
source_data = {'Name': '48 Rainbow Rd',
|
||
|
'GroupAddressStyle': 'ThreeLevel',
|
||
|
'LastModified': '2020-12-21T07:02:51.2400232Z',
|
||
|
'ProjectStart': '2020-12-03T07:36:03.324856Z',
|
||
|
'Comment': '',
|
||
|
'CompletionStatus': 'Editing',
|
||
|
'LastUsedPuid': '955',
|
||
|
'Guid': '0c85957b-c2ae-4985-9752-b300ab385b36'}
|
||
|
|
||
|
source_overrides = {'Guid':{'type':uuid.UUID},
|
||
|
'LastModified':{'type':datetime },
|
||
|
'ProjectStart':{'type':datetime },
|
||
|
}
|
||
|
source_optionals = {"Comment":True}
|
||
|
|
||
|
#create Model
|
||
|
model_Project=pydanticModelGenerator(
|
||
|
model_name="Project",
|
||
|
source_data=source_data,
|
||
|
overrides=source_overrides,
|
||
|
optionals=source_optionals).generate_model()
|
||
|
|
||
|
#create instance using DynamicModel
|
||
|
project_instance=model_Project(**project_info)
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str = None,
|
||
|
source_data: str = None,
|
||
|
params: Dict = {},
|
||
|
overrides: Dict = {},
|
||
|
optionals: Dict = {},
|
||
|
):
|
||
|
def field_type_generator(k, v, overrides, optionals):
|
||
|
print(k, v)
|
||
|
field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||
|
if v is None:
|
||
|
field_type = Any
|
||
|
else:
|
||
|
field_type = type(v)
|
||
|
|
||
|
return Optional[field_type]
|
||
|
|
||
|
self._model_name = model_name
|
||
|
self._json_data = source_data
|
||
|
self._model_def = [
|
||
|
ModelDef(
|
||
|
field=underscore(k),
|
||
|
field_alias=k,
|
||
|
field_type=field_type_generator(k, v, overrides, optionals),
|
||
|
field_value=v
|
||
|
)
|
||
|
for (k,v) in source_data.items() if k in params
|
||
|
]
|
||
|
|
||
|
def generate_model(self):
|
||
|
"""
|
||
|
Creates a pydantic BaseModel
|
||
|
from the json and overrides provided at initialization
|
||
|
"""
|
||
|
fields = {
|
||
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
||
|
}
|
||
|
DynamicModel = create_model(self._model_name, **fields)
|
||
|
DynamicModel.__config__.allow_population_by_field_name = True
|
||
|
return DynamicModel
|
||
|
|
||
|
StableDiffusionProcessingAPI = pydanticModelGenerator("StableDiffusionProcessing",
|
||
|
StableDiffusionProcessing().__dict__,
|
||
|
inspect.signature(StableDiffusionProcessing.__init__).parameters).generate_model()
|