fix img2img alt for SD v2.x
This commit is contained in:
parent
a9fed7c364
commit
05ec128ca9
@ -22,7 +22,12 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
|||||||
x = p.init_latent
|
x = p.init_latent
|
||||||
|
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
if shared.sd_model.parameterization == "v":
|
||||||
|
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
||||||
|
skip = 1
|
||||||
|
else:
|
||||||
|
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||||
|
skip = 0
|
||||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||||
|
|
||||||
shared.state.sampling_steps = steps
|
shared.state.sampling_steps = steps
|
||||||
@ -37,7 +42,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
|||||||
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
||||||
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
||||||
|
|
||||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
||||||
t = dnw.sigma_to_t(sigma_in)
|
t = dnw.sigma_to_t(sigma_in)
|
||||||
|
|
||||||
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
||||||
@ -69,7 +74,12 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
|||||||
x = p.init_latent
|
x = p.init_latent
|
||||||
|
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
if shared.sd_model.parameterization == "v":
|
||||||
|
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
||||||
|
skip = 1
|
||||||
|
else:
|
||||||
|
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||||
|
skip = 0
|
||||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||||
|
|
||||||
shared.state.sampling_steps = steps
|
shared.state.sampling_steps = steps
|
||||||
@ -84,7 +94,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
|||||||
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
||||||
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
||||||
|
|
||||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
||||||
|
|
||||||
if i == 1:
|
if i == 1:
|
||||||
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
||||||
|
Loading…
Reference in New Issue
Block a user