Separate .optim file from model

This commit is contained in:
aria1th 2022-11-03 14:30:53 +09:00
parent 7ea5956ad5
commit 0b143c1163

View File

@ -161,6 +161,7 @@ class Hypernetwork:
def save(self, filename): def save(self, filename):
state_dict = {} state_dict = {}
optimizer_saved_dict = {}
for k, v in self.layers.items(): for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict()) state_dict[k] = (v[0].state_dict(), v[1].state_dict())
@ -175,9 +176,10 @@ class Hypernetwork:
state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
if self.optimizer_name is not None: if self.optimizer_name is not None:
state_dict['optimizer_name'] = self.optimizer_name optimizer_saved_dict['optimizer_name'] = self.optimizer_name
if self.optimizer_state_dict: if self.optimizer_state_dict:
state_dict['optimizer_state_dict'] = self.optimizer_state_dict optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
torch.save(optimizer_saved_dict, filename + '.optim')
torch.save(state_dict, filename) torch.save(state_dict, filename)
@ -198,9 +200,11 @@ class Hypernetwork:
print(f"Layer norm is set to {self.add_layer_norm}") print(f"Layer norm is set to {self.add_layer_norm}")
self.use_dropout = state_dict.get('use_dropout', False) self.use_dropout = state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}") print(f"Dropout usage is set to {self.use_dropout}")
self.optimizer_name = state_dict.get('optimizer_name', 'AdamW')
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
print(f"Optimizer name is {self.optimizer_name}") print(f"Optimizer name is {self.optimizer_name}")
self.optimizer_state_dict = state_dict.get('optimizer_state_dict', None) self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
if self.optimizer_state_dict: if self.optimizer_state_dict:
print("Loaded existing optimizer from checkpoint") print("Loaded existing optimizer from checkpoint")
else: else: