add support for transformers==4.25.1
add fallback for when quick model creation fails
This commit is contained in:
parent
ce3f639ec8
commit
0f8603a559
@ -30,30 +30,53 @@ class DisableInitialization:
|
||||
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
||||
|
||||
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
||||
def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
|
||||
args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
|
||||
return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
|
||||
|
||||
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
||||
|
||||
# this file is always 404, prevent making request
|
||||
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json':
|
||||
raise transformers.utils.hub.EntryNotFoundError
|
||||
|
||||
try:
|
||||
return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=True, **kwargs)
|
||||
return original(url, *args, local_files_only=True, **kwargs)
|
||||
except Exception as e:
|
||||
return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs)
|
||||
return original(url, *args, local_files_only=False, **kwargs)
|
||||
|
||||
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
|
||||
|
||||
def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
|
||||
|
||||
def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
|
||||
|
||||
self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_
|
||||
self.init_no_grad_normal = torch.nn.init._no_grad_normal_
|
||||
self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_
|
||||
self.create_model_and_transforms = open_clip.create_model_and_transforms
|
||||
self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained
|
||||
self.transformers_utils_hub_get_from_cache = transformers.utils.hub.get_from_cache
|
||||
self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None)
|
||||
self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None)
|
||||
self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None)
|
||||
self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None)
|
||||
|
||||
torch.nn.init.kaiming_uniform_ = do_nothing
|
||||
torch.nn.init._no_grad_normal_ = do_nothing
|
||||
torch.nn.init._no_grad_uniform_ = do_nothing
|
||||
open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained
|
||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained
|
||||
transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache
|
||||
if self.transformers_modeling_utils_load_pretrained_model is not None:
|
||||
transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model
|
||||
if self.transformers_tokenization_utils_base_cached_file is not None:
|
||||
transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file
|
||||
if self.transformers_configuration_utils_cached_file is not None:
|
||||
transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file
|
||||
if self.transformers_utils_hub_get_from_cache is not None:
|
||||
transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform
|
||||
@ -61,5 +84,12 @@ class DisableInitialization:
|
||||
torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_
|
||||
open_clip.create_model_and_transforms = self.create_model_and_transforms
|
||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained
|
||||
transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache
|
||||
if self.transformers_modeling_utils_load_pretrained_model is not None:
|
||||
transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model
|
||||
if self.transformers_tokenization_utils_base_cached_file is not None:
|
||||
transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file
|
||||
if self.transformers_configuration_utils_cached_file is not None:
|
||||
transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file
|
||||
if self.transformers_utils_hub_get_from_cache is not None:
|
||||
transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache
|
||||
|
||||
|
@ -14,7 +14,7 @@ import ldm.modules.midas as midas
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization
|
||||
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors
|
||||
from modules.paths import models_path
|
||||
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||
|
||||
@ -333,7 +333,11 @@ def load_model(checkpoint_info=None):
|
||||
|
||||
timer = Timer()
|
||||
|
||||
with sd_disable_initialization.DisableInitialization():
|
||||
try:
|
||||
with sd_disable_initialization.DisableInitialization():
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
except Exception as e:
|
||||
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
|
||||
elapsed_create = timer.elapsed()
|
||||
|
Loading…
Reference in New Issue
Block a user