improve performance of 3-way merge on machines with not enough ram, by only accessing two of the models at a time
This commit is contained in:
parent
a1d3cbf92c
commit
0fd1307671
@ -175,11 +175,14 @@ def run_pnginfo(image):
|
|||||||
|
|
||||||
|
|
||||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
||||||
def weighted_sum(theta0, theta1, theta2, alpha):
|
def weighted_sum(theta0, theta1, alpha):
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||||
|
|
||||||
def add_difference(theta0, theta1, theta2, alpha):
|
def get_difference(theta1, theta2):
|
||||||
return theta0 + (theta1 - theta2) * alpha
|
return theta1 - theta2
|
||||||
|
|
||||||
|
def add_difference(theta0, theta1_2_diff, alpha):
|
||||||
|
return theta0 + (alpha * theta1_2_diff)
|
||||||
|
|
||||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
||||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
||||||
@ -201,20 +204,24 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||||||
theta_2 = None
|
theta_2 = None
|
||||||
|
|
||||||
theta_funcs = {
|
theta_funcs = {
|
||||||
"Weighted sum": weighted_sum,
|
"Weighted sum": (None, weighted_sum),
|
||||||
"Add difference": add_difference,
|
"Add difference": (get_difference, add_difference),
|
||||||
}
|
}
|
||||||
theta_func = theta_funcs[interp_method]
|
theta_func1, theta_func2 = theta_funcs[interp_method]
|
||||||
|
|
||||||
print(f"Merging...")
|
print(f"Merging...")
|
||||||
|
|
||||||
|
if theta_func1:
|
||||||
|
for key in tqdm.tqdm(theta_1.keys()):
|
||||||
|
if 'model' in key:
|
||||||
|
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
|
||||||
|
theta_1[key] = theta_func1(theta_1[key], t2)
|
||||||
|
del theta_2, teritary_model
|
||||||
|
|
||||||
for key in tqdm.tqdm(theta_0.keys()):
|
for key in tqdm.tqdm(theta_0.keys()):
|
||||||
if 'model' in key and key in theta_1:
|
if 'model' in key and key in theta_1:
|
||||||
t2 = (theta_2 or {}).get(key)
|
|
||||||
if t2 is None:
|
|
||||||
t2 = torch.zeros_like(theta_0[key])
|
|
||||||
|
|
||||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], t2, multiplier)
|
theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier)
|
||||||
|
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
theta_0[key] = theta_0[key].half()
|
theta_0[key] = theta_0[key].half()
|
||||||
|
Loading…
Reference in New Issue
Block a user