diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 438e3e9f..c963fc40 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -561,7 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0 #internal # size = len(ds.indexes) # loss_dict = defaultdict(lambda : deque(maxlen = 1024)) - loss_logging = [] + loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size) # losses = torch.zeros((size,)) # previous_mean_losses = [0] # previous_mean_loss = 0 @@ -602,7 +602,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi else: c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) loss = shared.sd_model(x, c)[0] / gradient_step - loss_logging.append(loss.item()) del x del c @@ -612,7 +611,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi # go back until we reach gradient accumulation steps if (j + 1) % gradient_step != 0: continue - + loss_logging.append(_loss_step) if clip_grad: clip_grad(weights, clip_grad_sched.learn_rate) @@ -690,9 +689,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi processed = processing.process_images(p) image = processed.images[0] if len(processed.images) > 0 else None - - if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: - textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, hypernetwork.step) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) @@ -703,7 +699,10 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi hypernetwork.train() if image is not None: shared.state.assign_current_image(image) - + if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: + textual_inversion.tensorboard_add_image(tensorboard_writer, + f"Validation at epoch {epoch_num}", image, + hypernetwork.step) last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) last_saved_image += f", prompt: {preview_text}"