Fix tensorboard related functions
This commit is contained in:
parent
598f7fcd84
commit
13445738d9
@ -561,7 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
_loss_step = 0 #internal
|
_loss_step = 0 #internal
|
||||||
# size = len(ds.indexes)
|
# size = len(ds.indexes)
|
||||||
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
loss_logging = []
|
loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
|
||||||
# losses = torch.zeros((size,))
|
# losses = torch.zeros((size,))
|
||||||
# previous_mean_losses = [0]
|
# previous_mean_losses = [0]
|
||||||
# previous_mean_loss = 0
|
# previous_mean_loss = 0
|
||||||
@ -602,7 +602,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
else:
|
else:
|
||||||
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||||
loss_logging.append(loss.item())
|
|
||||||
del x
|
del x
|
||||||
del c
|
del c
|
||||||
|
|
||||||
@ -612,7 +611,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
# go back until we reach gradient accumulation steps
|
# go back until we reach gradient accumulation steps
|
||||||
if (j + 1) % gradient_step != 0:
|
if (j + 1) % gradient_step != 0:
|
||||||
continue
|
continue
|
||||||
|
loss_logging.append(_loss_step)
|
||||||
if clip_grad:
|
if clip_grad:
|
||||||
clip_grad(weights, clip_grad_sched.learn_rate)
|
clip_grad(weights, clip_grad_sched.learn_rate)
|
||||||
|
|
||||||
@ -690,9 +689,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
|
|
||||||
processed = processing.process_images(p)
|
processed = processing.process_images(p)
|
||||||
image = processed.images[0] if len(processed.images) > 0 else None
|
image = processed.images[0] if len(processed.images) > 0 else None
|
||||||
|
|
||||||
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
|
||||||
textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, hypernetwork.step)
|
|
||||||
|
|
||||||
if unload:
|
if unload:
|
||||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
@ -703,7 +699,10 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
hypernetwork.train()
|
hypernetwork.train()
|
||||||
if image is not None:
|
if image is not None:
|
||||||
shared.state.assign_current_image(image)
|
shared.state.assign_current_image(image)
|
||||||
|
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
|
||||||
|
textual_inversion.tensorboard_add_image(tensorboard_writer,
|
||||||
|
f"Validation at epoch {epoch_num}", image,
|
||||||
|
hypernetwork.step)
|
||||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||||
last_saved_image += f", prompt: {preview_text}"
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user