diff --git a/javascript/hints.js b/javascript/hints.js index 9583c7dc..46f342cb 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -113,12 +113,7 @@ var titles = { "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.", - "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction.", - - "Custom KDiffusion Scheduler": "Custom noise scheduler to use for KDiffusion. See https://arxiv.org/abs/2206.00364", - "sigma min": "the minimum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use.", - "sigma max": "the maximum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use.", - "rho": "higher will make a more steep noise scheduler (decrease faster). default for karras is 7.0, for polyexponential is 1.0" + "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." }; function updateTooltipForSpan(span) { diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index d5f0a49b..c92fb0fb 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -318,6 +318,11 @@ infotext_to_setting_name_mapping = [ ('Conditional mask weight', 'inpainting_mask_weight'), ('Model hash', 'sd_model_checkpoint'), ('ENSD', 'eta_noise_seed_delta'), + ('Enable Custom KDiffusion Schedule', 'custom_k_sched'), + ('KDiffusion Scheduler Type', 'k_sched_type'), + ('KDiffusion Scheduler sigma_max', 'sigma_max'), + ('KDiffusion Scheduler sigma_min', 'sigma_min'), + ('KDiffusion Scheduler rho', 'rho'), ('Noise multiplier', 'initial_noise_multiplier'), ('Eta', 'eta_ancestral'), ('Eta DDIM', 'eta_ddim'), diff --git a/modules/img2img.py b/modules/img2img.py index bec4354f..d704bf90 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -78,7 +78,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, enable_k_sched, k_sched_type, sigma_min, sigma_max, rho, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 @@ -155,11 +155,6 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, override_settings=override_settings, - enable_custom_k_sched=enable_k_sched, - k_sched_type=k_sched_type, - sigma_min=sigma_min, - sigma_max=sigma_max, - rho=rho ) p.scripts = modules.scripts.scripts_img2img diff --git a/modules/processing.py b/modules/processing.py index 68f7f168..0a0181de 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -106,7 +106,7 @@ class StableDiffusionProcessing: """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None, enable_custom_k_sched: bool = False, k_sched_type: str = "karras", sigma_min: float=0.1, sigma_max: float=10.0, rho: float=7.0): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None, enable_custom_k_sched: bool = False, k_sched_type: str = "", sigma_min: float=0.0, sigma_max: float=0.0, rho: float=0.0): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -146,11 +146,11 @@ class StableDiffusionProcessing: self.s_tmin = s_tmin or opts.s_tmin self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option self.s_noise = s_noise or opts.s_noise - self.enable_custom_k_sched = enable_custom_k_sched - self.k_sched_type = k_sched_type - self.sigma_max = sigma_max - self.sigma_min = sigma_min - self.rho = rho + self.enable_custom_k_sched = opts.custom_k_sched + self.k_sched_type = k_sched_type or opts.k_sched_type + self.sigma_max = sigma_max or opts.sigma_max + self.sigma_min = sigma_min or opts.sigma_min + self.rho = rho or opts.rho self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} self.override_settings_restore_afterwards = override_settings_restore_afterwards self.is_using_inpainting_conditioning = False diff --git a/modules/shared.py b/modules/shared.py index 069b37d8..a0e762d2 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -47,7 +47,6 @@ ui_reorder_categories = [ "inpaint", "sampler", "checkboxes", - "kdiffusion_scheduler", "hires_fix", "dimensions", "cfg", @@ -518,6 +517,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + 'custom_k_sched': OptionInfo(False, "Enable Custom KDiffusion Scheduler"), + 'k_sched_type': OptionInfo("karras", "scheduler type", gr.Dropdown, {"choices": ["karras", "exponential", "polyexponential"]}), + 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("the maximum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."), + 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("the minimum noise strength for the scheduler. Set to 0 to use the same value which 'xxx karras' samplers use."), + 'rho': OptionInfo(7.0, "rho", gr.Number).info("higher will make a more steep noise scheduler (decrease faster). default for karras is 7.0, for polyexponential is 1.0"), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), diff --git a/modules/txt2img.py b/modules/txt2img.py index dd52e710..2e7d202d 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -7,7 +7,7 @@ from modules.ui import plaintext_to_html -def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, enable_k_sched, k_sched_type, sigma_min, sigma_max, rho, *args): +def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) p = processing.StableDiffusionProcessingTxt2Img( @@ -43,11 +43,6 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step hr_prompt=hr_prompt, hr_negative_prompt=hr_negative_prompt, override_settings=override_settings, - enable_custom_k_sched=enable_k_sched, - k_sched_type=k_sched_type, - sigma_min=sigma_min, - sigma_max=sigma_max, - rho=rho ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index fa3a41eb..001b9792 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -484,7 +484,6 @@ def create_ui(): with FormRow(elem_classes="checkboxes-row", variant="compact"): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") - t2i_enable_k_sched = gr.Checkbox(label='Custom KDiffusion Scheduler', value=False, elem_id="txt2img_enable_k_sched") enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) @@ -511,14 +510,6 @@ def create_ui(): with gr.Row(): hr_negative_prompt = gr.Textbox(label="Negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"]) - elif category == "kdiffusion_scheduler": - with FormGroup(visible=False, elem_id="txt2img_kdiffusion_scheduler") as t2i_k_sched_options: - with FormRow(elem_id="txt2img_kdiffusion_scheduler_row1", variant="compact"): - t2i_k_sched_type = gr.Dropdown(label="Type", elem_id="t2i_k_sched_type", choices=['karras', 'exponential', 'polyexponential'], value='karras') - t2i_k_sched_sigma_min = gr.Slider(minimum=0.0, maximum=0.5, step=0.05, label='sigma min', value=0.1, elem_id="txt2img_sigma_min") - t2i_k_sched_sigma_max = gr.Slider(minimum=0.0, maximum=50.0, step=0.1, label='sigma max', value=10.0, elem_id="txt2img_sigma_max") - t2i_k_sched_rho = gr.Slider(minimum=0.5, maximum=10.0, step=0.1, label='rho', value=7.0, elem_id="txt2img_rho") - elif category == "batch": if not opts.dimensions_and_batch_together: with FormRow(elem_id="txt2img_column_batch"): @@ -587,11 +578,6 @@ def create_ui(): hr_prompt, hr_negative_prompt, override_settings, - t2i_enable_k_sched, - t2i_k_sched_type, - t2i_k_sched_sigma_min, - t2i_k_sched_sigma_max, - t2i_k_sched_rho ] + custom_inputs, @@ -641,13 +627,6 @@ def create_ui(): show_progress = False, ) - t2i_enable_k_sched.change( - fn=lambda x: gr_show(x), - inputs=[t2i_enable_k_sched], - outputs=[t2i_k_sched_options], - show_progress=False - ) - txt2img_paste_fields = [ (txt2img_prompt, "Prompt"), (txt2img_negative_prompt, "Negative prompt"), @@ -676,11 +655,6 @@ def create_ui(): (hr_prompt, "Hires prompt"), (hr_negative_prompt, "Hires negative prompt"), (hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()), - (t2i_enable_k_sched, "Enable Custom KDiffusion Schedule"), - (t2i_k_sched_type, "KDiffusion Scheduler Type"), - (t2i_k_sched_sigma_max, "KDiffusion Scheduler sigma_max"), - (t2i_k_sched_sigma_min, "KDiffusion Scheduler sigma_min"), - (t2i_k_sched_rho, "KDiffusion Scheduler rho"), *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings) @@ -872,15 +846,6 @@ def create_ui(): with FormRow(elem_classes="checkboxes-row", variant="compact"): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") - i2i_enable_k_sched = gr.Checkbox(label='Custom KDiffusion Scheduler', value=False, elem_id="txt2img_enable_k_sched") - - elif category == "kdiffusion_scheduler": - with FormGroup(visible=False, elem_id="img2img_kdiffusion_scheduler") as i2i_k_sched_options: - with FormRow(elem_id="img2img_kdiffusion_scheduler_row1", variant="compact"): - i2i_k_sched_type = gr.Dropdown(label="Type", elem_id="t2i_k_sched_type", choices=['karras', 'exponential', 'polyexponential'], value='karras') - i2i_k_sched_sigma_min = gr.Slider(minimum=0.0, maximum=0.5, step=0.05, label='sigma min', value=0.1, elem_id="txt2img_sigma_min") - i2i_k_sched_sigma_max = gr.Slider(minimum=0.0, maximum=50.0, step=0.1, label='sigma max', value=10.0, elem_id="txt2img_sigma_max") - i2i_k_sched_rho = gr.Slider(minimum=0.5, maximum=10.0, step=0.1, label='rho', value=7.0, elem_id="txt2img_rho") elif category == "batch": if not opts.dimensions_and_batch_together: @@ -984,11 +949,6 @@ def create_ui(): img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, override_settings, - i2i_enable_k_sched, - i2i_k_sched_type, - i2i_k_sched_sigma_min, - i2i_k_sched_sigma_max, - i2i_k_sched_rho ] + custom_inputs, outputs=[ img2img_gallery, @@ -1072,13 +1032,6 @@ def create_ui(): outputs=[prompt, negative_prompt, styles], ) - i2i_enable_k_sched.change( - fn=lambda x: gr_show(x), - inputs=[i2i_enable_k_sched], - outputs=[i2i_k_sched_options], - show_progress=False - ) - token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter]) @@ -1090,11 +1043,6 @@ def create_ui(): (steps, "Steps"), (sampler_index, "Sampler"), (restore_faces, "Face restoration"), - (i2i_enable_k_sched, "Enable Custom KDiffusion Schedule"), - (i2i_k_sched_type, "KDiffusion Scheduler Type"), - (i2i_k_sched_sigma_max, "KDiffusion Scheduler sigma_max"), - (i2i_k_sched_sigma_min, "KDiffusion Scheduler sigma_min"), - (i2i_k_sched_rho, "KDiffusion Scheduler rho"), (cfg_scale, "CFG scale"), (image_cfg_scale, "Image CFG scale"), (seed, "Seed"),