add job info to modules

This commit is contained in:
Vladimir Mandic 2023-01-03 10:34:51 -05:00 committed by GitHub
parent 1d9dc48efd
commit 192ddc04d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 16 additions and 4 deletions

View File

@ -58,6 +58,9 @@ cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True): def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc() devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
imageArr = [] imageArr = []
# Also keep track of original file names # Also keep track of original file names
imageNameArr = [] imageNameArr = []
@ -94,6 +97,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
# Extra operation definitions # Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img) res = Image.fromarray(restored_img)
@ -104,6 +108,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info) return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]: def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img) res = Image.fromarray(restored_img)
@ -114,6 +119,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info) return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index] upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path) res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop: if mode == 1 and crop:
@ -180,6 +186,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
for image, image_name in zip(imageArr, imageNameArr): for image, image_name in zip(imageArr, imageNameArr):
if image is None: if image is None:
return outputs, "Please select an input image.", '' return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {} existing_pnginfo = image.info or {}
image = image.convert("RGB") image = image.convert("RGB")
@ -193,6 +202,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
else: else:
basename = '' basename = ''
if opts.enable_pnginfo: # append info before save
image.info = existing_pnginfo
image.info["extras"] = info
if save_output: if save_output:
# Add upscaler name as a suffix. # Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else "" suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
@ -203,10 +216,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True, images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix) no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
if opts.enable_pnginfo:
image.info = existing_pnginfo
image.info["extras"] = info
if extras_mode != 2 or show_extras_results : if extras_mode != 2 or show_extras_results :
outputs.append(image) outputs.append(image)

View File

@ -417,6 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared.loaded_hypernetwork = Hypernetwork() shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path) shared.loaded_hypernetwork.load(path)
shared.state.job = "train-hypernetwork"
shared.state.textinfo = "Initializing hypernetwork training..." shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps shared.state.job_count = steps

View File

@ -124,6 +124,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
files = listfiles(src) files = listfiles(src)
shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..." shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files) shared.state.job_count = len(files)

View File

@ -245,6 +245,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
create_image_every = create_image_every or 0 create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..." shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps shared.state.job_count = steps