From 1d11e896984c883f6a0debb3abaef945595cbc70 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 29 Apr 2023 15:57:09 +0300 Subject: [PATCH] rework Negative Guidance minimum sigma to work with AND, add infotext and copypaste parameters support --- javascript/hints.js | 3 +- modules/generation_parameters_copypaste.py | 1 + modules/processing.py | 3 +- modules/sd_samplers_kdiffusion.py | 43 +++++++++++++--------- 4 files changed, 30 insertions(+), 20 deletions(-) diff --git a/javascript/hints.js b/javascript/hints.js index c6bae360..44d418da 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -111,7 +111,8 @@ titles = { "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.", "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", - "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited." + "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.", + "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." } diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index e7269363..99f1a0d3 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -309,6 +309,7 @@ infotext_to_setting_name_mapping = [ ('UniPC order', 'uni_pc_order'), ('UniPC lower order final', 'uni_pc_lower_order_final'), ('RNG', 'randn_source'), + ('NGMS', 's_min_uncond'), ] diff --git a/modules/processing.py b/modules/processing.py index 04a06290..c50784f4 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -480,7 +480,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, "Init image hash": getattr(p, 'init_img_hash', None), - "RNG": (opts.randn_source if opts.randn_source != "GPU" else None) + "RNG": opts.randn_source if opts.randn_source != "GPU" else None, + "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index d42d5fcf..f8aaac59 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -115,20 +115,21 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond + skip_uncond = False - if self.step % 2 and s_min_uncond > 0 and not is_edit_model: - # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it - sigma_threshold = s_min_uncond - if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ): - uncond = torch.zeros([0,0,uncond.shape[2]]) - x_in=x_in[:x_in.shape[0]//2] - sigma_in=sigma_in[:sigma_in.shape[0]//2] + # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it + if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: + skip_uncond = True + x_in = x_in[:-batch_size] + sigma_in = sigma_in[:-batch_size] - if tensor.shape[1] == uncond.shape[1]: - if not is_edit_model: - cond_in = torch.cat([tensor, uncond]) - else: + if tensor.shape[1] == uncond.shape[1] or skip_uncond: + if is_edit_model: cond_in = torch.cat([tensor, uncond, uncond]) + elif skip_uncond: + cond_in = tensor + else: + cond_in = torch.cat([tensor, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in)) @@ -152,9 +153,15 @@ class CFGDenoiser(torch.nn.Module): x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) - if uncond.shape[0]: + if not skip_uncond: x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) + if skip_uncond: + #x_out = torch.cat([x_out, x_out[0:batch_size]]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be + denoised_image_indexes = [x[0][0] for x in conds_list] + fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) + x_out = torch.cat([x_out, fake_uncond]) + denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) @@ -165,13 +172,12 @@ class CFGDenoiser(torch.nn.Module): elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) - if not is_edit_model: - if uncond.shape[0]: - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - else: - denoised = x_out - else: + if is_edit_model: denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) + elif skip_uncond: + denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) + else: + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) if self.mask is not None: denoised = self.init_latent * self.mask + self.nmask * denoised @@ -221,6 +227,7 @@ class KDiffusionSampler: self.eta = None self.config = None self.last_latent = None + self.s_min_uncond = None self.conditioning_key = sd_model.model.conditioning_key