diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index db1e4367..0eb4c525 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -19,10 +19,10 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At class SdOptimization: - def __init__(self, name, label=None, cmd_opt=None): - self.name = name - self.label = label - self.cmd_opt = cmd_opt + name: str = None + label: str | None = None + cmd_opt: str | None = None + priority: int = 0 def title(self): if self.label is None: @@ -33,9 +33,6 @@ class SdOptimization: def is_available(self): return True - def priority(self): - return 0 - def apply(self): pass @@ -45,41 +42,37 @@ class SdOptimization: class SdOptimizationXformers(SdOptimization): - def __init__(self): - super().__init__("xformers", cmd_opt="xformers") + name = "xformers" + cmd_opt = "xformers" + priority = 100 def is_available(self): return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)) - def priority(self): - return 100 - def apply(self): ldm.modules.attention.CrossAttention.forward = xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward class SdOptimizationSdpNoMem(SdOptimization): - def __init__(self, name="sdp-no-mem", label="scaled dot product without memory efficient attention", cmd_opt="opt_sdp_no_mem_attention"): - super().__init__(name, label, cmd_opt) + name = "sdp-no-mem" + label = "scaled dot product without memory efficient attention" + cmd_opt = "opt_sdp_no_mem_attention" + priority = 90 def is_available(self): return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) - def priority(self): - return 90 - def apply(self): ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward class SdOptimizationSdp(SdOptimizationSdpNoMem): - def __init__(self): - super().__init__("sdp", "scaled dot product", cmd_opt="opt_sdp_attention") - - def priority(self): - return 80 + name = "sdp" + label = "scaled dot product" + cmd_opt = "opt_sdp_attention" + priority = 80 def apply(self): ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward @@ -87,11 +80,9 @@ class SdOptimizationSdp(SdOptimizationSdpNoMem): class SdOptimizationSubQuad(SdOptimization): - def __init__(self): - super().__init__("sub-quadratic", cmd_opt="opt_sub_quad_attention") - - def priority(self): - return 10 + name = "sub-quadratic" + cmd_opt = "opt_sub_quad_attention" + priority = 10 def apply(self): ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward @@ -99,20 +90,21 @@ class SdOptimizationSubQuad(SdOptimization): class SdOptimizationV1(SdOptimization): - def __init__(self): - super().__init__("V1", "original v1", cmd_opt="opt_split_attention_v1") + name = "V1" + label = "original v1" + cmd_opt = "opt_split_attention_v1" + priority = 10 - def priority(self): - return 10 def apply(self): ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 class SdOptimizationInvokeAI(SdOptimization): - def __init__(self): - super().__init__("InvokeAI", cmd_opt="opt_split_attention_invokeai") + name = "InvokeAI" + cmd_opt = "opt_split_attention_invokeai" + @property def priority(self): return 1000 if not torch.cuda.is_available() else 10 @@ -121,11 +113,9 @@ class SdOptimizationInvokeAI(SdOptimization): class SdOptimizationDoggettx(SdOptimization): - def __init__(self): - super().__init__("Doggettx", cmd_opt="opt_split_attention") - - def priority(self): - return 20 + name = "Doggettx" + cmd_opt = "opt_split_attention" + priority = 20 def apply(self): ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward