support specifying te and unet weights separately

update lora code
support full module
This commit is contained in:
AUTOMATIC1111 2023-07-17 09:00:47 +03:00
parent 46466f09d0
commit 238adeaffb
10 changed files with 151 additions and 78 deletions

View File

@ -14,14 +14,28 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = [] names = []
multipliers = [] te_multipliers = []
unet_multipliers = []
dyn_dims = []
for params in params_list: for params in params_list:
assert params.items assert params.items
names.append(params.items[0]) names.append(params.positional[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
networks.load_networks(names, multipliers) te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
te_multiplier = float(params.named.get("te", te_multiplier))
unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else 1.0
unet_multiplier = float(params.named.get("unet", unet_multiplier))
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
te_multipliers.append(te_multiplier)
unet_multipliers.append(unet_multiplier)
dyn_dims.append(dyn_dim)
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
if shared.opts.lora_add_hashes_to_infotext: if shared.opts.lora_add_hashes_to_infotext:
network_hashes = [] network_hashes = []

View File

@ -13,3 +13,9 @@ def rebuild_conventional(up, down, shape, dyn_dim=None):
up = up[:, :dyn_dim] up = up[:, :dyn_dim]
down = down[:dyn_dim, :] down = down[:dyn_dim, :]
return (up @ down).reshape(shape) return (up @ down).reshape(shape)
def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)

View File

@ -68,7 +68,9 @@ class Network: # LoraModule
def __init__(self, name, network_on_disk: NetworkOnDisk): def __init__(self, name, network_on_disk: NetworkOnDisk):
self.name = name self.name = name
self.network_on_disk = network_on_disk self.network_on_disk = network_on_disk
self.multiplier = 1.0 self.te_multiplier = 1.0
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {} self.modules = {}
self.mtime = None self.mtime = None
@ -88,6 +90,42 @@ class NetworkModule:
self.sd_key = weights.sd_key self.sd_key = weights.sd_key
self.sd_module = weights.sd_module self.sd_module = weights.sd_module
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
def multiplier(self):
if 'transformer' in self.sd_key[:20]:
return self.network.te_multiplier
else:
return self.network.unet_multiplier
def calc_scale(self):
if self.scale is not None:
return self.scale
if self.dim is not None and self.alpha is not None:
return self.alpha / self.dim
return 1.0
def finalize_updown(self, updown, orig_weight, output_shape):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
return updown * self.calc_scale() * self.multiplier()
def calc_updown(self, target): def calc_updown(self, target):
raise NotImplementedError() raise NotImplementedError()

View File

@ -0,0 +1,23 @@
import lyco_helpers
import network
class ModuleTypeFull(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["diff"]):
return NetworkModuleFull(net, weights)
return None
class NetworkModuleFull(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.weight = weights.w.get("diff")
def calc_updown(self, orig_weight):
output_shape = self.weight.shape
updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,6 +1,5 @@
import lyco_helpers import lyco_helpers
import network import network
import network_lyco
class ModuleTypeHada(network.ModuleType): class ModuleTypeHada(network.ModuleType):
@ -11,7 +10,7 @@ class ModuleTypeHada(network.ModuleType):
return None return None
class NetworkModuleHada(network_lyco.NetworkModuleLyco): class NetworkModuleHada(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights): def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights) super().__init__(net, weights)

View File

@ -1,5 +1,4 @@
import network import network
import network_lyco
class ModuleTypeIa3(network.ModuleType): class ModuleTypeIa3(network.ModuleType):
@ -10,7 +9,7 @@ class ModuleTypeIa3(network.ModuleType):
return None return None
class NetworkModuleIa3(network_lyco.NetworkModuleLyco): class NetworkModuleIa3(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights): def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights) super().__init__(net, weights)

View File

@ -2,7 +2,6 @@ import torch
import lyco_helpers import lyco_helpers
import network import network
import network_lyco
class ModuleTypeLokr(network.ModuleType): class ModuleTypeLokr(network.ModuleType):
@ -22,7 +21,7 @@ def make_kron(orig_shape, w1, w2):
return torch.kron(w1, w2).reshape(orig_shape) return torch.kron(w1, w2).reshape(orig_shape)
class NetworkModuleLokr(network_lyco.NetworkModuleLyco): class NetworkModuleLokr(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights): def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights) super().__init__(net, weights)

View File

@ -1,5 +1,6 @@
import torch import torch
import lyco_helpers
import network import network
from modules import devices from modules import devices
@ -16,29 +17,42 @@ class NetworkModuleLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights): def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights) super().__init__(net, weights)
self.up = self.create_module(weights.w["lora_up.weight"]) self.up_model = self.create_module(weights.w, "lora_up.weight")
self.down = self.create_module(weights.w["lora_down.weight"]) self.down_model = self.create_module(weights.w, "lora_down.weight")
self.alpha = weights.w["alpha"] if "alpha" in weights.w else None self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
self.dim = weights.w["lora_down.weight"].shape[0]
def create_module(self, weights, key, none_ok=False):
weight = weights.get(key)
def create_module(self, weight, none_ok=False):
if weight is None and none_ok: if weight is None and none_ok:
return None return None
if type(self.sd_module) == torch.nn.Linear: is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(self.sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: elif is_conv and key == "lora_down.weight" or key == "dyn_up":
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) if len(weight.shape) == 2:
elif type(self.sd_module) == torch.nn.MultiheadAttention: weight = weight.reshape(weight.shape[0], -1, 1, 1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif is_conv and key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else: else:
print(f'Network layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
return None
with torch.no_grad(): with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight) module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype) module.to(device=devices.cpu, dtype=devices.dtype)
@ -46,25 +60,27 @@ class NetworkModuleLora(network.NetworkModule):
return module return module
def calc_updown(self, target): def calc_updown(self, orig_weight):
up = self.up.weight.to(target.device, dtype=target.dtype) up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = self.down.weight.to(target.device, dtype=target.dtype) down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): output_shape = [up.size(0), down.size(1)]
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) if self.mid_model is not None:
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): # cp-decomposition
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else: else:
updown = up @ down if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
updown = updown * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0) return self.finalize_updown(updown, orig_weight, output_shape)
return updown
def forward(self, x, y): def forward(self, x, y):
self.up.to(device=devices.device) self.up_model.to(device=devices.device)
self.down.to(device=devices.device) self.down_model.to(device=devices.device)
return y + self.up(self.down(x)) * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0) return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()

View File

@ -1,35 +0,0 @@
import network
class NetworkModuleLyco(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
def finalize_updown(self, updown, orig_weight, output_shape):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
scale = (
self.scale if self.scale is not None
else self.alpha / self.dim if self.dim is not None and self.alpha is not None
else 1.0
)
return updown * scale * self.network.multiplier

View File

@ -6,6 +6,7 @@ import network_lora
import network_hada import network_hada
import network_ia3 import network_ia3
import network_lokr import network_lokr
import network_full
import torch import torch
from typing import Union from typing import Union
@ -17,6 +18,7 @@ module_types = [
network_hada.ModuleTypeHada(), network_hada.ModuleTypeHada(),
network_ia3.ModuleTypeIa3(), network_ia3.ModuleTypeIa3(),
network_lokr.ModuleTypeLokr(), network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
] ]
@ -52,6 +54,15 @@ def convert_diffusers_name_to_compvis(key, is_sd2):
m = [] m = []
if match(m, r"lora_unet_conv_in(.*)"):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, r"lora_unet_conv_out(.*)"):
return f'diffusion_model_out_2{m[0]}'
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
@ -179,7 +190,7 @@ def load_network(name, network_on_disk):
return net return net
def load_networks(names, multipliers=None): def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {} already_loaded = {}
for net in loaded_networks: for net in loaded_networks:
@ -218,7 +229,9 @@ def load_networks(names, multipliers=None):
print(f"Couldn't find network with name {name}") print(f"Couldn't find network with name {name}")
continue continue
net.multiplier = multipliers[i] if multipliers else 1.0 net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net) loaded_networks.append(net)
if failed_to_load_networks: if failed_to_load_networks:
@ -250,7 +263,7 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
return return
current_names = getattr(self, "network_current_names", ()) current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_networks) wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None) weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None: if weights_backup is None:
@ -288,9 +301,10 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
updown_k = module_k.calc_updown(self.in_proj_weight) updown_k = module_k.calc_updown(self.in_proj_weight)
updown_v = module_v.calc_updown(self.in_proj_weight) updown_v = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv self.in_proj_weight += updown_qkv
self.out_proj.weight += module_out.calc_updown(self.out_proj.weight) self.out_proj.weight += updown_out
continue continue
if module is None: if module is None: