Merge pull request #1109 from d8ahazard/ModelLoader

Model Loader, Fixes
This commit is contained in:
AUTOMATIC1111 2022-09-30 09:35:58 +03:00 committed by GitHub
commit 25414bcd05
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 2176 additions and 1413 deletions

7
.gitignore vendored
View File

@ -1,10 +1,13 @@
__pycache__
/ESRGAN
*.ckpt
*.pth
/ESRGAN/*
/SwinIR/*
/repositories
/venv
/tmp
/model.ckpt
/models/**/*.ckpt
/models/**/*
/GFPGANv1.3.pth
/gfpgan/weights/*.pth
/ui-config.json

View File

@ -1 +0,0 @@

View File

@ -1,5 +1,5 @@
# this scripts installs necessary requirements and launches main program in webui.py
import shutil
import subprocess
import os
import sys
@ -22,7 +22,6 @@ taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HAS
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
ldsr_commit_hash = os.environ.get('LDSR_COMMIT_HASH', "abf33e7002d59d9085081bce93ec798dcabd49af")
args = shlex.split(commandline_args)
@ -120,9 +119,11 @@ git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
# Using my repo until my changes are merged, as this makes interfacing with our version of SD-web a lot easier
git_clone("https://github.com/Hafiidz/latent-diffusion", repo_dir('latent-diffusion'), "LDSR", ldsr_commit_hash)
if os.path.isdir(repo_dir('latent-diffusion')):
try:
shutil.rmtree(repo_dir('latent-diffusion'))
except:
pass
if not is_installed("lpips"):
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")

79
modules/bsrgan_model.py Normal file
View File

@ -0,0 +1,79 @@
import os.path
import sys
import traceback
import PIL.Image
import numpy as np
import torch
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import shared, modelloader
from modules.bsrgan_model_arch import RRDBNet
from modules.paths import models_path
class UpscalerBSRGAN(modules.upscaler.Upscaler):
def __init__(self, dirname):
self.name = "BSRGAN"
self.model_path = os.path.join(models_path, self.name)
self.model_name = "BSRGAN 4x"
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
self.user_path = dirname
super().__init__()
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
scalers = []
if len(model_paths) == 0:
scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data)
for file in model_paths:
if "http" in file:
name = self.model_name
else:
name = modelloader.friendly_name(file)
try:
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data)
except Exception:
print(f"Error loading BSRGAN model: {file}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file):
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
return img
model.to(shared.device)
torch.cuda.empty_cache()
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
torch.cuda.empty_cache()
return PIL.Image.fromarray(output, 'RGB')
def load_model(self, path: str):
if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True)
else:
filename = path
if not os.path.exists(filename) or filename is None:
print("Unable to load %s from %s" % (self.model_dir, filename))
return None
print("Loading %s from %s" % (self.model_dir, filename))
model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=2) # define network
model.load_state_dict(torch.load(filename), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
return model

View File

@ -0,0 +1,103 @@
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualDenseBlock_5C(nn.Module):
def __init__(self, nf=64, gc=32, bias=True):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
'''Residual in Residual Dense Block'''
def __init__(self, nf, gc=32):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class RRDBNet(nn.Module):
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.sf = sf
print([in_nc, out_nc, nf, nb, gc, sf])
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
if self.sf==4:
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
fea = self.conv_first(x)
trunk = self.trunk_conv(self.RRDB_trunk(fea))
fea = fea + trunk
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
if self.sf==4:
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.HRconv(fea)))
return out

View File

@ -5,31 +5,31 @@ import traceback
import cv2
import torch
from modules import shared, devices
from modules.paths import script_path
import modules.shared
import modules.face_restoration
from importlib import reload
import modules.shared
from modules import shared, devices, modelloader
from modules.paths import script_path, models_path
# codeformer people made a choice to include modified basicsr librry to their projectwhich makes
# it utterly impossiblr to use it alongside with other libraries that also use basicsr, like GFPGAN.
# codeformer people made a choice to include modified basicsr library to their project which makes
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
# I am making a choice to include some files from codeformer to work around this issue.
pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
have_codeformer = False
codeformer = None
def setup_codeformer():
def setup_model(dirname):
global model_path
if not os.path.exists(model_path):
os.makedirs(model_path)
path = modules.paths.paths.get("CodeFormer", None)
if path is None:
return
# both GFPGAN and CodeFormer use bascisr, one has it installed from pip the other uses its own
#stored_sys_path = sys.path
#sys.path = [path] + sys.path
try:
from torchvision.transforms.functional import normalize
from modules.codeformer.codeformer_arch import CodeFormer
@ -44,18 +44,23 @@ def setup_codeformer():
def name(self):
return "CodeFormer"
def __init__(self):
def __init__(self, dirname):
self.net = None
self.face_helper = None
self.cmd_dir = dirname
def create_models(self):
if self.net is not None and self.face_helper is not None:
self.net.to(devices.device_codeformer)
return self.net, self.face_helper
model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir)
if len(model_paths) != 0:
ckpt_path = model_paths[0]
else:
print("Unable to load codeformer model.")
return None, None
net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer)
ckpt_path = load_file_from_url(url=pretrain_model_url, model_dir=os.path.join(path, 'weights/CodeFormer'), progress=True)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
@ -74,6 +79,9 @@ def setup_codeformer():
original_resolution = np_image.shape[0:2]
self.create_models()
if self.net is None or self.face_helper is None:
return np_image
self.face_helper.clean_all()
self.face_helper.read_image(np_image)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
@ -114,7 +122,7 @@ def setup_codeformer():
have_codeformer = True
global codeformer
codeformer = FaceRestorerCodeFormer()
codeformer = FaceRestorerCodeFormer(dirname)
shared.face_restorers.append(codeformer)
except Exception:

View File

@ -1,19 +1,61 @@
import os
import sys
import traceback
import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
import modules.esrgam_model_arch as arch
from modules import shared
from modules.shared import opts
from modules import shared, modelloader, images
from modules.devices import has_mps
import modules.images
from modules.paths import models_path
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts
def load_model(filename):
class UpscalerESRGAN(Upscaler):
def __init__(self, dirname):
self.name = "ESRGAN"
self.model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download"
self.model_name = "ESRGAN 4x"
self.scalers = []
self.user_path = dirname
self.model_path = os.path.join(models_path, self.name)
super().__init__()
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
scalers = []
if len(model_paths) == 0:
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data)
for file in model_paths:
print(f"File: {file}")
if "http" in file:
name = self.model_name
else:
name = modelloader.friendly_name(file)
scaler_data = UpscalerData(name, file, self, 4)
print(f"ESRGAN: Adding scaler {name}")
self.scalers.append(scaler_data)
def do_upscale(self, img, selected_model):
model = self.load_model(selected_model)
if model is None:
return img
model.to(shared.device)
img = esrgan_upscale(model, img)
return img
def load_model(self, path: str):
if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="%s.pth" % self.model_name,
progress=True)
else:
filename = path
if not os.path.exists(filename) or filename is None:
print("Unable to load %s from %s" % (self.model_path, filename))
return None
# this code is adapted from https://github.com/xinntao/ESRGAN
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
@ -23,7 +65,8 @@ def load_model(filename):
return crt_model
if 'model.0.weight' not in pretrained_net:
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net[
"params_ema"]
if is_realesrgan:
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
else:
@ -76,6 +119,7 @@ def load_model(filename):
crt_model.eval()
return crt_model
def upscale_without_tiling(model, img):
img = np.array(img)
img = img[:, :, ::-1]
@ -95,7 +139,7 @@ def esrgan_upscale(model, img):
if opts.ESRGAN_tile == 0:
return upscale_without_tiling(model, img)
grid = modules.images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
newtiles = []
scale_factor = 1
@ -110,32 +154,7 @@ def esrgan_upscale(model, img):
newrow.append([x * scale_factor, w * scale_factor, output])
newtiles.append([y * scale_factor, h * scale_factor, newrow])
newgrid = modules.images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
output = modules.images.combine_grid(newgrid)
newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor,
grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
output = images.combine_grid(newgrid)
return output
class UpscalerESRGAN(modules.images.Upscaler):
def __init__(self, filename, title):
self.name = title
self.model = load_model(filename)
def do_upscale(self, img):
model = self.model.to(shared.device)
img = esrgan_upscale(model, img)
return img
def load_models(dirname):
for file in os.listdir(dirname):
path = os.path.join(dirname, file)
model_name, extension = os.path.splitext(file)
if extension != '.pt' and extension != '.pth':
continue
try:
modules.shared.sd_upscalers.append(UpscalerESRGAN(path, model_name))
except Exception:
print(f"Error loading ESRGAN model: {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)

View File

@ -40,6 +40,8 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
outputs = []
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
existing_pnginfo = image.info or {}
image = image.convert("RGB")
@ -65,7 +67,6 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
image = res
if upscaling_resize != 1.0:
def upscale(image, scaler_index, resize):
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist())
@ -74,7 +75,7 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
c = cached_images.get(key)
if c is None:
upscaler = shared.sd_upscalers[scaler_index]
c = upscaler.upscale(image, image.width * resize, image.height * resize)
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
cached_images[key] = c
return c

View File

@ -1,39 +1,25 @@
import os
import sys
import traceback
from glob import glob
from modules import shared, devices
from modules.shared import cmd_opts
from modules.paths import script_path
import facexlib
import gfpgan
import modules.face_restoration
from modules import shared, devices, modelloader
from modules.paths import models_path
def gfpgan_model_path():
from modules.shared import cmd_opts
filemask = 'GFPGAN*.pth'
if cmd_opts.gfpgan_model is not None:
return cmd_opts.gfpgan_model
places = [script_path, '.', os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models')]
filename = None
for place in places:
filename = next(iter(glob(os.path.join(place, filemask))), None)
if filename is not None:
break
return filename
model_dir = "GFPGAN"
user_path = None
model_path = os.path.join(models_path, model_dir)
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
have_gfpgan = False
loaded_gfpgan_model = None
def gfpgan():
def gfpgann():
global loaded_gfpgan_model
global model_path
if loaded_gfpgan_model is not None:
loaded_gfpgan_model.gfpgan.to(shared.device)
return loaded_gfpgan_model
@ -41,7 +27,17 @@ def gfpgan():
if gfpgan_constructor is None:
return None
model = gfpgan_constructor(model_path=gfpgan_model_path() or 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth', upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN")
if len(models) == 1 and "http" in models[0]:
model_file = models[0]
elif len(models) != 0:
latest_file = max(models, key=os.path.getctime)
model_file = latest_file
else:
print("Unable to load gfpgan model!")
return None
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2,
bg_upsampler=None)
model.gfpgan.to(shared.device)
loaded_gfpgan_model = model
@ -49,10 +45,12 @@ def gfpgan():
def gfpgan_fix_faces(np_image):
model = gfpgan()
model = gfpgann()
if model is None:
return np_image
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False,
only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
if shared.opts.face_restoration_unload:
@ -61,21 +59,41 @@ def gfpgan_fix_faces(np_image):
return np_image
have_gfpgan = False
gfpgan_constructor = None
def setup_gfpgan():
def setup_model(dirname):
global model_path
if not os.path.exists(model_path):
os.makedirs(model_path)
try:
gfpgan_model_path()
if os.path.exists(cmd_opts.gfpgan_dir):
sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir))
from gfpgan import GFPGANer
from facexlib import detection, parsing
global user_path
global have_gfpgan
have_gfpgan = True
global gfpgan_constructor
load_file_from_url_orig = gfpgan.utils.load_file_from_url
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url
def my_load_file_from_url(**kwargs):
print("Setting model_dir to " + model_path)
return load_file_from_url_orig(**dict(kwargs, model_dir=model_path))
def facex_load_file_from_url(**kwargs):
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None))
def facex_load_file_from_url2(**kwargs):
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None))
gfpgan.utils.load_file_from_url = my_load_file_from_url
facexlib.detection.load_file_from_url = facex_load_file_from_url
facexlib.parsing.load_file_from_url = facex_load_file_from_url2
user_path = dirname
print("Have gfpgan should be true?")
have_gfpgan = True
gfpgan_constructor = GFPGANer
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration):
@ -84,7 +102,9 @@ def setup_gfpgan():
def restore(self, np_image):
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgann().enhance(np_image_bgr, has_aligned=False,
only_center_face=False,
paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
return np_image

View File

@ -11,7 +11,6 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto
import string
import modules.shared
from modules import sd_samplers, shared
from modules.shared import opts, cmd_opts
@ -52,8 +51,8 @@ def split_grid(image, tile_w=512, tile_h=512, overlap=64):
cols = math.ceil((w - overlap) / non_overlap_width)
rows = math.ceil((h - overlap) / non_overlap_height)
dx = (w - tile_w) / (cols-1) if cols > 1 else 0
dy = (h - tile_h) / (rows-1) if rows > 1 else 0
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
@ -67,7 +66,7 @@ def split_grid(image, tile_w=512, tile_h=512, overlap=64):
for col in range(cols):
x = int(col * dx)
if x+tile_w >= w:
if x + tile_w >= w:
x = w - tile_w
tile = image.crop((x, y, x + tile_w, y + tile_h))
@ -85,8 +84,10 @@ def combine_grid(grid):
r = r.astype(np.uint8)
return Image.fromarray(r, 'L')
mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0))
mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1))
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0))
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1))
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
@ -129,10 +130,12 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
def draw_texts(drawing, draw_x, draw_y, lines):
for i, line in enumerate(lines):
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt,
fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
if not line.is_active:
drawing.line((draw_x - line.size[0]//2, draw_y + line.size[1]//2, draw_x + line.size[0]//2, draw_y + line.size[1]//2), fill=color_inactive, width=4)
drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2,
draw_y + line.size[1] // 2), fill=color_inactive, width=4)
draw_y += line.size[1] + line_spacing
@ -171,7 +174,8 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
ver_texts]
pad_top = max(hor_text_heights) + line_spacing * 2
@ -202,8 +206,10 @@ def draw_prompt_matrix(im, width, height, all_prompts):
prompts_horiz = prompts[:boundary]
prompts_vert = prompts[boundary:]
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))]
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))]
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in
range(1 << len(prompts_horiz))]
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in
range(1 << len(prompts_vert))]
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
@ -214,7 +220,8 @@ def resize_image(resize_mode, im, width, height):
return im.resize((w, h), resample=LANCZOS)
upscaler = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img][0]
return upscaler.upscale(im, w, h)
scale = w / im.width
return upscaler.scaler.upscale(im, scale)
if resize_mode == 0:
res = resize(im, width, height)
@ -244,11 +251,13 @@ def resize_image(resize_mode, im, width, height):
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
box=(fill_width + src_w, 0))
return res
@ -256,7 +265,7 @@ def resize_image(resize_mode, im, width, height):
invalid_filename_chars = '<>:"/\\|?*\n'
invalid_filename_prefix = ' '
invalid_filename_postfix = ' .'
re_nonletters = re.compile(r'[\s'+string.punctuation+']+')
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
max_filename_part_length = 128
@ -283,7 +292,8 @@ def apply_filename_pattern(x, p, seed, prompt):
words = [x for x in re_nonletters.split(prompt or "") if len(x) > 0]
if len(words) == 0:
words = ["empty"]
x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
x = x.replace("[prompt_words]",
sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
if p is not None:
x = x.replace("[steps]", str(p.steps))
@ -291,7 +301,8 @@ def apply_filename_pattern(x, p, seed, prompt):
x = x.replace("[width]", str(p.width))
x = x.replace("[height]", str(p.height))
x = x.replace("[styles]", sanitize_filename_part(", ".join(p.styles), replace_spaces=False))
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
x = x.replace("[sampler]",
sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
x = x.replace("[model_hash]", shared.sd_model.sd_model_hash)
x = x.replace("[date]", datetime.date.today().isoformat())
@ -303,6 +314,7 @@ def apply_filename_pattern(x, p, seed, prompt):
return x
def get_next_sequence_number(path, basename):
"""
Determines and returns the next sequence number to use when saving an image in the specified directory.
@ -316,7 +328,8 @@ def get_next_sequence_number(path, basename):
prefix_length = len(basename)
for p in os.listdir(path):
if p.startswith(basename):
l = os.path.splitext(p[prefix_length:])[0].split('-') #splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
l = os.path.splitext(p[prefix_length:])[0].split(
'-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
try:
result = max(int(l[0]), result)
except ValueError:
@ -324,7 +337,10 @@ def get_next_sequence_number(path, basename):
return result + 1
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix=""):
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False,
no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None,
forced_filename=None, suffix=""):
if short_filename or prompt is None or seed is None:
file_decoration = ""
elif opts.save_to_dirs:
@ -361,7 +377,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
fullfn = "a.png"
fullfn_without_extension = "a"
for i in range(500):
fn = f"{basecount+i:05}" if basename == '' else f"{basename}-{basecount+i:04}"
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}")
if not os.path.exists(fullfn):
@ -403,31 +419,3 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
file.write(info + "\n")
class Upscaler:
name = "Lanczos"
def do_upscale(self, img):
return img
def upscale(self, img, w, h):
for i in range(3):
if img.width >= w and img.height >= h:
break
img = self.do_upscale(img)
if img.width != w or img.height != h:
img = img.resize((int(w), int(h)), resample=LANCZOS)
return img
class UpscalerNone(Upscaler):
name = "None"
def upscale(self, img, w, h):
return img
modules.shared.sd_upscalers.append(UpscalerNone())
modules.shared.sd_upscalers.append(Upscaler())

View File

@ -1,67 +1,45 @@
import os
import sys
import traceback
from collections import namedtuple
from basicsr.utils.download_util import load_file_from_url
import modules.images
from modules.upscaler import Upscaler, UpscalerData
from modules.ldsr_model_arch import LDSR
from modules import shared
from modules.paths import script_path
LDSRModelInfo = namedtuple("LDSRModelInfo", ["name", "location", "model", "netscale"])
ldsr_models = []
have_ldsr = False
LDSR_obj = None
from modules.paths import models_path
class UpscalerLDSR(modules.images.Upscaler):
def __init__(self, steps):
self.steps = steps
class UpscalerLDSR(Upscaler):
def __init__(self, user_path):
self.name = "LDSR"
self.model_path = os.path.join(models_path, self.name)
self.user_path = user_path
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
super().__init__()
scaler_data = UpscalerData("LDSR", None, self)
self.scalers = [scaler_data]
def do_upscale(self, img):
return upscale_with_ldsr(img)
def load_model(self, path: str):
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.pth", progress=True)
yaml = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="project.yaml", progress=True)
def add_lsdr():
modules.shared.sd_upscalers.append(UpscalerLDSR(100))
def setup_ldsr():
path = modules.paths.paths.get("LDSR", None)
if path is None:
return
global have_ldsr
global LDSR_obj
try:
from LDSR import LDSR
model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
repo_path = 'latent-diffusion/experiments/pretrained_models/'
model_path = load_file_from_url(url=model_url, model_dir=os.path.join("repositories", repo_path),
progress=True, file_name="model.chkpt")
yaml_path = load_file_from_url(url=yaml_url, model_dir=os.path.join("repositories", repo_path),
progress=True, file_name="project.yaml")
have_ldsr = True
LDSR_obj = LDSR(model_path, yaml_path)
return LDSR(model, yaml)
except Exception:
print("Error importing LDSR:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
have_ldsr = False
def upscale_with_ldsr(image):
setup_ldsr()
if not have_ldsr or LDSR_obj is None:
return image
return None
def do_upscale(self, img, path):
ldsr = self.load_model(path)
if ldsr is None:
print("NO LDSR!")
return img
ddim_steps = shared.opts.ldsr_steps
pre_scale = shared.opts.ldsr_pre_down
post_scale = shared.opts.ldsr_post_down
image = LDSR_obj.super_resolution(image, ddim_steps, pre_scale, post_scale)
return image
return ldsr.super_resolution(img, ddim_steps, self.scale)

225
modules/ldsr_model_arch.py Normal file
View File

@ -0,0 +1,225 @@
import gc
import time
import warnings
import numpy as np
import torch
import torchvision
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap
warnings.filterwarnings("ignore", category=UserWarning)
# Create LDSR Class
class LDSR:
def load_model_from_config(self, half_attention):
print(f"Loading model from {self.modelPath}")
pl_sd = torch.load(self.modelPath, map_location="cpu")
sd = pl_sd["state_dict"]
config = OmegaConf.load(self.yamlPath)
model = instantiate_from_config(config.model)
model.load_state_dict(sd, strict=False)
model.cuda()
if half_attention:
model = model.half()
model.eval()
return {"model": model}
def __init__(self, model_path, yaml_path):
self.modelPath = model_path
self.yamlPath = yaml_path
@staticmethod
def run(model, selected_path, custom_steps, eta):
example = get_cond(selected_path)
n_runs = 1
guider = None
ckwargs = None
ddim_use_x0_pred = False
temperature = 1.
eta = eta
custom_shape = None
height, width = example["image"].shape[1:3]
split_input = height >= 128 and width >= 128
if split_input:
ks = 128
stride = 64
vqf = 4 #
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
"vqf": vqf,
"patch_distributed_vq": True,
"tie_braker": False,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01}
else:
if hasattr(model, "split_input_params"):
delattr(model, "split_input_params")
x_t = None
logs = None
for n in range(n_runs):
if custom_shape is not None:
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
logs = make_convolutional_sample(example, model,
custom_steps=custom_steps,
eta=eta, quantize_x0=False,
custom_shape=custom_shape,
temperature=temperature, noise_dropout=0.,
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
ddim_use_x0_pred=ddim_use_x0_pred
)
return logs
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
model = self.load_model_from_config(half_attention)
# Run settings
diffusion_steps = int(steps)
eta = 1.0
down_sample_method = 'Lanczos'
gc.collect()
torch.cuda.empty_cache()
im_og = image
width_og, height_og = im_og.size
# If we can adjust the max upscale size, then the 4 below should be our variable
print("Foo")
down_sample_rate = target_scale / 4
print(f"Downsample rate is {down_sample_rate}")
wd = width_og * down_sample_rate
hd = height_og * down_sample_rate
width_downsampled_pre = int(wd)
height_downsampled_pre = int(hd)
if down_sample_rate != 1:
print(
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else:
print(f"Down sample rate is 1 from {target_scale} / 4")
logs = self.run(model["model"], im_og, diffusion_steps, eta)
sample = logs["sample"]
sample = sample.detach().cpu()
sample = torch.clamp(sample, -1., 1.)
sample = (sample + 1.) / 2. * 255
sample = sample.numpy().astype(np.uint8)
sample = np.transpose(sample, (0, 2, 3, 1))
a = Image.fromarray(sample[0])
del model
gc.collect()
torch.cuda.empty_cache()
print(f'Processing finished!')
return a
def get_cond(selected_path):
example = dict()
up_f = 4
c = selected_path.convert('RGB')
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
antialias=True)
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
c = c.to(torch.device("cuda"))
example["LR_image"] = c
example["image"] = c_up
return example
@torch.no_grad()
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
corrector_kwargs=None, x_t=None
):
ddim = DDIMSampler(model)
bs = shape[0]
shape = shape[1:]
print(f"Sampling with eta = {eta}; steps: {steps}")
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
mask=mask, x0=x0, temperature=temperature, verbose=False,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs, x_t=x_t)
return samples, intermediates
@torch.no_grad()
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
log = dict()
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=not (hasattr(model, 'split_input_params')
and model.cond_stage_key == 'coordinates_bbox'),
return_original_cond=True)
if custom_shape is not None:
z = torch.randn(custom_shape)
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0 = None
log["input"] = x
log["reconstruction"] = xrec
if ismap(xc):
log["original_conditioning"] = model.to_rgb(xc)
if hasattr(model, 'cond_stage_key'):
log[model.cond_stage_key] = model.to_rgb(xc)
else:
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_model:
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_key == 'class_label':
log[model.cond_stage_key] = xc[model.cond_stage_key]
with model.ema_scope("Plotting"):
t0 = time.time()
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
eta=eta,
quantize_x0=quantize_x0, mask=None, x0=z0,
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
x_t=x_T)
t1 = time.time()
if ddim_use_x0_pred:
sample = intermediates['pred_x0'][-1]
x_sample = model.decode_first_stage(sample)
try:
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
except:
pass
log["sample"] = x_sample
log["time"] = t1 - t0
return log

133
modules/modelloader.py Normal file
View File

@ -0,0 +1,133 @@
import os
import shutil
import importlib
from urllib.parse import urlparse
from basicsr.utils.download_util import load_file_from_url
from modules import shared
from modules.upscaler import Upscaler
from modules.paths import script_path, models_path
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.
@param download_name: Specify to download from model_url immediately.
@param model_url: If no other models are found, this will be downloaded on upscale.
@param model_path: The location to store/find models in.
@param command_path: A command-line argument to search for models in first.
@param ext_filter: An optional list of filename extensions to filter by
@return: A list of paths containing the desired model(s)
"""
output = []
if ext_filter is None:
ext_filter = []
try:
places = []
if command_path is not None and command_path != model_path:
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
if os.path.exists(pretrained_path):
print(f"Appending path: {pretrained_path}")
places.append(pretrained_path)
elif os.path.exists(command_path):
places.append(command_path)
places.append(model_path)
for place in places:
if os.path.exists(place):
for file in os.listdir(place):
full_path = os.path.join(place, file)
if os.path.isdir(full_path):
continue
if len(ext_filter) != 0:
model_name, extension = os.path.splitext(file)
if extension not in ext_filter:
continue
if file not in output:
output.append(full_path)
if model_url is not None and len(output) == 0:
if download_name is not None:
dl = load_file_from_url(model_url, model_path, True, download_name)
output.append(dl)
else:
output.append(model_url)
except:
pass
return output
def friendly_name(file: str):
if "http" in file:
file = urlparse(file).path
file = os.path.basename(file)
model_name, extension = os.path.splitext(file)
model_name = model_name.replace("_", " ").title()
return model_name
def cleanup_models():
# This code could probably be more efficient if we used a tuple list or something to store the src/destinations
# and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
# somehow auto-register and just do these things...
root_path = script_path
src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion")
move_files(src_path, dest_path, ".ckpt")
src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "gfpgan")
dest_path = os.path.join(models_path, "GFPGAN")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "SwinIR")
dest_path = os.path.join(models_path, "SwinIR")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
dest_path = os.path.join(models_path, "LDSR")
move_files(src_path, dest_path)
def move_files(src_path: str, dest_path: str, ext_filter: str = None):
try:
if not os.path.exists(dest_path):
os.makedirs(dest_path)
if os.path.exists(src_path):
for file in os.listdir(src_path):
fullpath = os.path.join(src_path, file)
if os.path.isfile(fullpath):
if ext_filter is not None:
if ext_filter not in file:
continue
print(f"Moving {file} from {src_path} to {dest_path}.")
try:
shutil.move(fullpath, dest_path)
except:
pass
if len(os.listdir(src_path)) == 0:
print(f"Removing empty folder: {src_path}")
shutil.rmtree(src_path, True)
except:
pass
def load_upscalers():
datas = []
for cls in Upscaler.__subclasses__():
name = cls.__name__
module_name = cls.__module__
module = importlib.import_module(module_name)
class_ = getattr(module, name)
cmd_name = f"{name.lower().replace('upscaler', '')}-models-path"
opt_string = None
try:
opt_string = shared.opts.__getattr__(cmd_name)
except:
pass
scaler = class_(opt_string)
for child in scaler.scalers:
datas.append(child)
shared.sd_upscalers = datas

View File

@ -3,9 +3,10 @@ import os
import sys
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
models_path = os.path.join(script_path, "models")
sys.path.insert(0, script_path)
# search for directory of stable diffsuion in following palces
# search for directory of stable diffusion in following places
sd_path = None
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)]
for possible_sd_path in possible_sd_paths:

View File

@ -1,119 +1,139 @@
import os
import sys
import traceback
from collections import namedtuple
import numpy as np
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
import modules.images
from modules.upscaler import Upscaler, UpscalerData
from modules.paths import models_path
from modules.shared import cmd_opts, opts
RealesrganModelInfo = namedtuple("RealesrganModelInfo", ["name", "location", "model", "netscale"])
realesrgan_models = []
have_realesrgan = False
def get_realesrgan_models():
class UpscalerRealESRGAN(Upscaler):
def __init__(self, path):
self.name = "RealESRGAN"
self.model_path = os.path.join(models_path, self.name)
self.user_path = path
super().__init__()
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
models = [
RealesrganModelInfo(
name="Real-ESRGAN General x4x3",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
netscale=4,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
),
RealesrganModelInfo(
name="Real-ESRGAN General WDN x4x3",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
netscale=4,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
),
RealesrganModelInfo(
name="Real-ESRGAN AnimeVideo",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
netscale=4,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
),
RealesrganModelInfo(
name="Real-ESRGAN 4x plus",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
netscale=4,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
),
RealesrganModelInfo(
name="Real-ESRGAN 4x plus anime 6B",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
netscale=4,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
),
RealesrganModelInfo(
name="Real-ESRGAN 2x plus",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
netscale=2,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
),
]
return models
except Exception as e:
print("Error makeing Real-ESRGAN midels list:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
class UpscalerRealESRGAN(modules.images.Upscaler):
def __init__(self, upscaling, model_index):
self.upscaling = upscaling
self.model_index = model_index
self.name = realesrgan_models[model_index].name
def do_upscale(self, img):
return upscale_with_realesrgan(img, self.upscaling, self.model_index)
def setup_realesrgan():
global realesrgan_models
global have_realesrgan
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
realesrgan_models = get_realesrgan_models()
have_realesrgan = True
for i, model in enumerate(realesrgan_models):
if model.name in opts.realesrgan_enabled_models:
modules.shared.sd_upscalers.append(UpscalerRealESRGAN(model.netscale, i))
self.enable = True
self.scalers = []
scalers = self.load_models(path)
for scaler in scalers:
if scaler.name in opts.realesrgan_enabled_models:
self.scalers.append(scaler)
except Exception:
print("Error importing Real-ESRGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
self.enable = False
self.scalers = []
realesrgan_models = [RealesrganModelInfo('None', '', 0, None)]
have_realesrgan = False
def do_upscale(self, img, path):
if not self.enable:
return img
info = self.load_model(path)
if not os.path.exists(info.data_path):
print("Unable to load RealESRGAN model: %s" % info.name)
return img
def upscale_with_realesrgan(image, RealESRGAN_upscaling, RealESRGAN_model_index):
if not have_realesrgan:
return image
info = realesrgan_models[RealESRGAN_model_index]
model = info.model()
upsampler = RealESRGANer(
scale=info.netscale,
model_path=info.location,
model=model,
scale=info.scale,
model_path=info.data_path,
model=info.model(),
half=not cmd_opts.no_half,
tile=opts.ESRGAN_tile,
tile_pad=opts.ESRGAN_tile_overlap,
)
upsampled = upsampler.enhance(np.array(image), outscale=RealESRGAN_upscaling)[0]
upsampled = upsampler.enhance(np.array(img), outscale=info.scale)[0]
image = Image.fromarray(upsampled)
return image
def load_model(self, path):
try:
info = None
for scaler in self.scalers:
if scaler.data_path == path:
info = scaler
if info is None:
print(f"Unable to find model info: {path}")
return None
model_file = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
info.data_path = model_file
return info
except Exception as e:
print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return None
def load_models(self, _):
return get_realesrgan_models(self)
def get_realesrgan_models(scaler):
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
models = [
UpscalerData(
name="R-ESRGAN General 4xV3",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3"
".pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4,
act_type='prelu')
),
UpscalerData(
name="R-ESRGAN General WDN 4xV3",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4,
act_type='prelu')
),
UpscalerData(
name="R-ESRGAN AnimeVideo",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
scale=4,
upscaler=scaler,
model=lambda: SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4,
act_type='prelu')
),
UpscalerData(
name="R-ESRGAN 4x+",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
scale=4,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
),
UpscalerData(
name="R-ESRGAN 4x+ Anime6B",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
scale=4,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
),
UpscalerData(
name="R-ESRGAN 2x+",
path="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
scale=2,
upscaler=scaler,
model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
),
]
return models
except Exception as e:
print("Error making Real-ESRGAN models list:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)

View File

@ -8,7 +8,14 @@ from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from modules import shared
from modules import shared, modelloader
from modules.paths import models_path
model_dir = "Stable-diffusion"
model_path = os.path.join(models_path, model_dir)
model_name = "sd-v1-4.ckpt"
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
user_dir = None
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {}
@ -23,14 +30,47 @@ except Exception:
pass
def modeltitle(path, h):
abspath = os.path.abspath(path)
if abspath.startswith(model_dir):
name = abspath.replace(model_dir, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
return f'{name} [{h}]'
def setup_model(dirname):
global model_path
global model_name
global model_url
global user_dir
global model_list
user_dir = dirname
if not os.path.exists(model_path):
os.makedirs(model_path)
checkpoints_list.clear()
list_models()
def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()])
def list_models():
global model_path
global model_url
global model_name
global user_dir
checkpoints_list.clear()
model_dir = os.path.abspath(shared.cmd_opts.ckpt_dir)
model_list = modelloader.load_models(model_path=model_path,model_url=model_url,command_path= user_dir,
ext_filter=[".ckpt"], download_name=model_name)
print(f"Model list: {model_list}")
model_dir = os.path.abspath(model_path)
def modeltitle(path, h):
abspath = os.path.abspath(path)
@ -53,12 +93,10 @@ def list_models():
title, model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, model_name)
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found: {cmd_ckpt}", file=sys.stderr)
if os.path.exists(model_dir):
for filename in glob.glob(model_dir + '/**/*.ckpt', recursive=True):
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
h = model_hash(filename)
title, model_name = modeltitle(filename, h)
title = modeltitle(filename, h)
checkpoints_list[title] = CheckpointInfo(filename, title, h, model_name)
def get_closet_checkpoint_match(searchString):
@ -69,6 +107,7 @@ def get_closet_checkpoint_match(searchString):
def model_hash(filename):
try:
print(f"Opening: {filename}")
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
@ -89,7 +128,7 @@ def select_checkpoint():
if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print(f" - directory {os.path.abspath(shared.cmd_opts.stablediffusion_models_path)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)

View File

@ -1,26 +1,28 @@
import sys
import argparse
import datetime
import json
import os
import sys
import gradio as gr
import tqdm
import datetime
import modules.artists
from modules.paths import script_path, sd_path
from modules.devices import get_optimal_device
import modules.styles
import modules.interrogate
import modules.memmon
import modules.sd_models
import modules.styles
from modules.devices import get_optimal_device
from modules.paths import script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
model_path = os.path.join(script_path, 'models')
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; this checkpoint will be added to the list of checkpoints and loaded by default if you don't have a checkpoint selected in settings",)
parser.add_argument("--ckpt-dir", type=str, default=os.path.join(script_path, 'models'), help="path to directory with stable diffusion checkpoints",)
# This should be deprecated, but we'll leave it for a few iterations
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints (Deprecated, use '--stablediffusion-models-path'", )
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
@ -34,8 +36,14 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
parser.add_argument("--esrgan-models-path", type=str, help="path to directory with ESRGAN models", default=os.path.join(script_path, 'ESRGAN'))
parser.add_argument("--swinir-models-path", type=str, help="path to directory with SwinIR models", default=os.path.join(script_path, 'SwinIR'))
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(model_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(model_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(model_path, 'ESRGAN'))
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(model_path, 'BSRGAN'))
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(model_path, 'RealESRGAN'))
parser.add_argument("--stablediffusion-models-path", type=str, help="Path to directory with Stable-diffusion checkpoints.", default=os.path.join(model_path, 'SwinIR'))
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(model_path, 'SwinIR'))
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(model_path, 'LDSR'))
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
@ -53,7 +61,10 @@ parser.add_argument("--autolaunch", action='store_true', help="open the webui UR
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
cmd_opts = parser.parse_args()
if cmd_opts.ckpt_dir is not None:
print("The 'ckpt-dir' arg is deprecated in favor of the 'stablediffusion-models-path' argument and will be "
"removed in a future release. Please use the new option if you wish to use a custom checkpoint directory.")
cmd_opts.__setattr__("stablediffusion-models-path", cmd_opts.ckpt_dir)
device = get_optimal_device()
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
@ -61,6 +72,7 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
config_filename = cmd_opts.ui_settings_file
class State:
interrupted = False
job = ""
@ -95,13 +107,13 @@ prompt_styles = modules.styles.StyleDatabase(styles_filename)
interrogator = modules.interrogate.InterrogateModels("interrogate")
face_restorers = []
modules.sd_models.list_models()
# This was moved to webui.py with the other model "setup" calls.
# modules.sd_models.list_models()
def realesrgan_models_names():
import modules.realesrgan_model
return [x.name for x in modules.realesrgan_model.get_realesrgan_models()]
return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
class OptionInfo:
@ -167,13 +179,10 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo
options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["Real-ESRGAN 4x plus", "Real-ESRGAN 4x plus anime 6B"], "Select which RealESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN x4+", "R-ESRGAN x4+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
"ldsr_pre_down": OptionInfo(1, "LDSR Pre-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
"ldsr_post_down": OptionInfo(1, "LDSR Post-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}),
}))

View File

@ -1,123 +0,0 @@
import sys
import traceback
import cv2
import os
import contextlib
import numpy as np
from PIL import Image
import torch
import modules.images
from modules.shared import cmd_opts, opts, device
from modules.swinir_arch import SwinIR as net
precision_scope = (
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
)
def load_model(filename, scale=4):
model = net(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
pretrained_model = torch.load(filename)
model.load_state_dict(pretrained_model["params_ema"], strict=True)
if not cmd_opts.no_half:
model = model.half()
return model
def load_models(dirname):
for file in os.listdir(dirname):
path = os.path.join(dirname, file)
model_name, extension = os.path.splitext(file)
if extension != ".pt" and extension != ".pth":
continue
try:
modules.shared.sd_upscalers.append(UpscalerSwin(path, model_name))
except Exception:
print(f"Error loading SwinIR model: {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def upscale(
img,
model,
tile=opts.SWIN_tile,
tile_overlap=opts.SWIN_tile_overlap,
window_size=8,
scale=4,
):
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
with torch.no_grad(), precision_scope("cuda"):
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
output = inference(img, model, tile, tile_overlap, window_size, scale)
output = output[..., : h_old * scale, : w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(
output[[2, 1, 0], :, :], (1, 2, 0)
) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output, "RGB")
def inference(img, model, tile, tile_overlap, window_size, scale):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=device)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
].add_(out_patch_mask)
output = E.div_(W)
return output
class UpscalerSwin(modules.images.Upscaler):
def __init__(self, filename, title):
self.name = title
self.model = load_model(filename)
def do_upscale(self, img):
model = self.model.to(device)
img = upscale(img, model)
return img

139
modules/swinir_model.py Normal file
View File

@ -0,0 +1,139 @@
import contextlib
import os
import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from modules import modelloader
from modules.paths import models_path
from modules.shared import cmd_opts, opts, device
from modules.swinir_model_arch import SwinIR as net
from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
)
class UpscalerSwinIR(Upscaler):
def __init__(self, dirname):
self.name = "SwinIR"
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
"-L_x4_GAN.pth "
self.model_name = "SwinIR 4x"
self.model_path = os.path.join(models_path, self.name)
self.user_path = dirname
super().__init__()
scalers = []
model_files = self.find_models(ext_filter=[".pt", ".pth"])
for model in model_files:
if "http" in model:
name = self.model_name
else:
name = modelloader.friendly_name(model)
model_data = UpscalerData(name, model, self)
scalers.append(model_data)
self.scalers = scalers
def do_upscale(self, img, model_file):
model = self.load_model(model_file)
if model is None:
return img
model = model.to(device)
img = upscale(img, model)
try:
torch.cuda.empty_cache()
except:
pass
return img
def load_model(self, path, scale=4):
if "http" in path:
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
else:
filename = path
if filename is None or not os.path.exists(filename):
return None
model = net(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
pretrained_model = torch.load(filename)
model.load_state_dict(pretrained_model["params_ema"], strict=True)
if not cmd_opts.no_half:
model = model.half()
return model
def upscale(
img,
model,
tile=opts.SWIN_tile,
tile_overlap=opts.SWIN_tile_overlap,
window_size=8,
scale=4,
):
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
with torch.no_grad(), precision_scope("cuda"):
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
output = inference(img, model, tile, tile_overlap, window_size, scale)
output = output[..., : h_old * scale, : w_old * scale]
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(
output[[2, 1, 0], :, :], (1, 2, 0)
) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output, "RGB")
def inference(img, model, tile, tile_overlap, window_size, scale):
# test the image tile by tile
b, c, h, w = img.size()
tile = min(tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
sf = scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=device)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
output = E.div_(W)
return output

121
modules/upscaler.py Normal file
View File

@ -0,0 +1,121 @@
import os
from abc import abstractmethod
import PIL
import numpy as np
import torch
from PIL import Image
import modules.shared
from modules import modelloader, shared
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
from modules.paths import models_path
class Upscaler:
name = None
model_path = None
model_name = None
model_url = None
enable = True
filter = None
model = None
user_path = None
scalers: []
tile = True
def __init__(self, create_dirs=False):
self.mod_pad_h = None
self.tile_size = modules.shared.opts.ESRGAN_tile
self.tile_pad = modules.shared.opts.ESRGAN_tile_overlap
self.device = modules.shared.device
self.img = None
self.output = None
self.scale = 1
self.half = not modules.shared.cmd_opts.no_half
self.pre_pad = 0
self.mod_scale = None
if self.name is not None and create_dirs:
self.model_path = os.path.join(models_path, self.name)
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
try:
import cv2
self.can_tile = True
except:
pass
@abstractmethod
def do_upscale(self, img: PIL.Image, selected_model: str):
return img
def upscale(self, img: PIL.Image, scale: int, selected_model: str = None):
self.scale = scale
dest_w = img.width * scale
dest_h = img.height * scale
for i in range(3):
if img.width >= dest_w and img.height >= dest_h:
break
img = self.do_upscale(img, selected_model)
if img.width != dest_w or img.height != dest_h:
img = img.resize(dest_w, dest_h, resample=LANCZOS)
return img
@abstractmethod
def load_model(self, path: str):
pass
def find_models(self, ext_filter=None) -> list:
return modelloader.load_models(model_path=self.model_path, model_url=self.model_url, command_path=self.user_path)
def update_status(self, prompt):
print(f"\nextras: {prompt}", file=shared.progress_print_out)
class UpscalerData:
name = None
data_path = None
scale: int = 4
scaler: Upscaler = None
model: None
def __init__(self, name: str, path: str, upscaler: Upscaler = None, scale: int = 4, model=None):
self.name = name
self.data_path = path
self.scaler = upscaler
self.scale = scale
self.model = model
class UpscalerNone(Upscaler):
name = "None"
scalers = []
def load_model(self, path):
pass
def do_upscale(self, img, selected_model=None):
return img
def __init__(self, dirname=None):
super().__init__(False)
self.scalers = [UpscalerData("None", None, self)]
class UpscalerLanczos(Upscaler):
scalers = []
def do_upscale(self, img, selected_model=None):
return img.resize((int(img.width * self.scale), int(img.height * self.scale)), resample=LANCZOS)
def load_model(self, _):
pass
def __init__(self, dirname=None):
super().__init__(False)
self.name = "Lanczos"
self.scalers = [UpscalerData("Lanczos", None, self)]

View File

@ -3,36 +3,36 @@ import threading
from modules import devices
from modules.paths import script_path
import signal
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.ui
import threading
import modules.paths
import modules.codeformer_model as codeformer
import modules.esrgan_model as esrgan
import modules.bsrgan_model as bsrgan
import modules.extras
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
import modules.ldsr_model as ldsr
import modules.lowvram
import modules.realesrgan_model as realesrgan
import modules.scripts
import modules.sd_hijack
import modules.codeformer_model
import modules.gfpgan_model
import modules.face_restoration
import modules.realesrgan_model as realesrgan
import modules.esrgan_model as esrgan
import modules.ldsr_model as ldsr
import modules.extras
import modules.lowvram
import modules.txt2img
import modules.img2img
import modules.swinir as swinir
import modules.sd_models
import modules.shared as shared
import modules.swinir_model as swinir
import modules.txt2img
import modules.ui
from modules import modelloader
from modules.paths import script_path
from modules.shared import cmd_opts
modules.codeformer_model.setup_codeformer()
modules.gfpgan_model.setup_gfpgan()
modelloader.cleanup_models()
modules.sd_models.setup_model(cmd_opts.stablediffusion_models_path)
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
esrgan.load_models(cmd_opts.esrgan_models_path)
swinir.load_models(cmd_opts.swinir_models_path)
realesrgan.setup_realesrgan()
ldsr.add_lsdr()
modelloader.load_upscalers()
queue_lock = threading.Lock()