extras: Add option to run upscaling before face fixing
Face restoration can look much better if ran after upscaling, as it allows the restoration to fix upscaling artifacts. This patch adds an option to choose which order to run upscaling/face fixing in.
This commit is contained in:
parent
737eb28fac
commit
26d0819384
@ -7,6 +7,10 @@ from PIL import Image
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from typing import Callable, List, Tuple
|
||||
from functools import partial
|
||||
from dataclasses import dataclass
|
||||
|
||||
from modules import processing, shared, images, devices, sd_models
|
||||
from modules.shared import opts
|
||||
import modules.gfpgan_model
|
||||
@ -20,7 +24,7 @@ import gradio as gr
|
||||
cached_images = {}
|
||||
|
||||
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ):
|
||||
devices.torch_gc()
|
||||
|
||||
imageArr = []
|
||||
@ -56,7 +60,99 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||
else:
|
||||
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
||||
|
||||
|
||||
|
||||
# Extra operation definitions
|
||||
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if gfpgan_visibility < 1.0:
|
||||
res = Image.blend(image, res, gfpgan_visibility)
|
||||
|
||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
||||
return (res, info)
|
||||
|
||||
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if codeformer_visibility < 1.0:
|
||||
res = Image.blend(image, res, codeformer_visibility)
|
||||
|
||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||
return (res, info)
|
||||
|
||||
|
||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
||||
pixels = tuple(np.array(small).flatten().tolist())
|
||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight,
|
||||
resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels
|
||||
|
||||
c = cached_images.get(key)
|
||||
if c is None:
|
||||
upscaler = shared.sd_upscalers[scaler_index]
|
||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||
if mode == 1 and crop:
|
||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
||||
c = cropped
|
||||
cached_images[key] = c
|
||||
return c
|
||||
|
||||
|
||||
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
|
||||
nonlocal upscaling_resize
|
||||
if resize_mode == 1:
|
||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||
crop_info = " (crop)" if upscaling_crop else ""
|
||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||
return (image, info)
|
||||
|
||||
@dataclass
|
||||
class UpscaleParams:
|
||||
upscaler_idx: int
|
||||
blend_alpha: float
|
||||
|
||||
def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||
blended_result: Image.Image = None
|
||||
for upscaler in params:
|
||||
res = upscale(image, upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
|
||||
if blended_result is None:
|
||||
blended_result = res
|
||||
else:
|
||||
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
|
||||
return (blended_result, info)
|
||||
|
||||
# Build a list of operations to run
|
||||
facefix_ops: List[Callable] = []
|
||||
if gfpgan_visibility > 0:
|
||||
facefix_ops.append(run_gfpgan)
|
||||
if codeformer_visibility > 0:
|
||||
facefix_ops.append(run_codeformer)
|
||||
|
||||
upscale_ops: List[Callable] = []
|
||||
if resize_mode == 1:
|
||||
upscale_ops.append(run_prepare_crop)
|
||||
|
||||
if upscaling_resize != 0:
|
||||
step_params: List[UpscaleParams] = []
|
||||
step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_1, blend_alpha=1.0 ))
|
||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||
step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility ) )
|
||||
|
||||
upscale_ops.append( partial(run_upscalers_blend, step_params) )
|
||||
|
||||
|
||||
extras_ops: List[Callable] = []
|
||||
if upscale_first:
|
||||
extras_ops = upscale_ops + facefix_ops
|
||||
else:
|
||||
extras_ops = facefix_ops + upscale_ops
|
||||
|
||||
|
||||
for image, image_name in zip(imageArr, imageNameArr):
|
||||
if image is None:
|
||||
return outputs, "Please select an input image.", ''
|
||||
@ -64,60 +160,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||
|
||||
image = image.convert("RGB")
|
||||
info = ""
|
||||
|
||||
if gfpgan_visibility > 0:
|
||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if gfpgan_visibility < 1.0:
|
||||
res = Image.blend(image, res, gfpgan_visibility)
|
||||
|
||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
||||
image = res
|
||||
|
||||
if codeformer_visibility > 0:
|
||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||
res = Image.fromarray(restored_img)
|
||||
|
||||
if codeformer_visibility < 1.0:
|
||||
res = Image.blend(image, res, codeformer_visibility)
|
||||
|
||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||
image = res
|
||||
|
||||
if resize_mode == 1:
|
||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||
crop_info = " (crop)" if upscaling_crop else ""
|
||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||
|
||||
if upscaling_resize != 1.0:
|
||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
||||
pixels = tuple(np.array(small).flatten().tolist())
|
||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight,
|
||||
resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels
|
||||
|
||||
c = cached_images.get(key)
|
||||
if c is None:
|
||||
upscaler = shared.sd_upscalers[scaler_index]
|
||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||
if mode == 1 and crop:
|
||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
||||
c = cropped
|
||||
cached_images[key] = c
|
||||
|
||||
return c
|
||||
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
||||
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
|
||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
||||
|
||||
image = res
|
||||
# Run each operation on each image
|
||||
for op in extras_ops:
|
||||
image, info = op(image, info)
|
||||
|
||||
while len(cached_images) > 2:
|
||||
del cached_images[next(iter(cached_images.keys()))]
|
||||
|
@ -1119,6 +1119,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||
|
||||
with gr.Group():
|
||||
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
|
||||
|
||||
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
@ -1152,6 +1155,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
extras_upscaler_1,
|
||||
extras_upscaler_2,
|
||||
extras_upscaler_2_visibility,
|
||||
upscale_before_face_fix,
|
||||
],
|
||||
outputs=[
|
||||
result_images,
|
||||
|
Loading…
Reference in New Issue
Block a user