diff --git a/modules/extras.py b/modules/extras.py index 22c5a1c1..79047f3a 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -7,6 +7,10 @@ from PIL import Image import torch import tqdm +from typing import Callable, List, Tuple +from functools import partial +from dataclasses import dataclass + from modules import processing, shared, images, devices, sd_models from modules.shared import opts import modules.gfpgan_model @@ -20,7 +24,7 @@ import gradio as gr cached_images = {} -def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): +def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ): devices.torch_gc() imageArr = [] @@ -56,7 +60,99 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ else: outpath = opts.outdir_samples or opts.outdir_extras_samples - + + # Extra operation definitions + def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) + res = Image.fromarray(restored_img) + + if gfpgan_visibility < 1.0: + res = Image.blend(image, res, gfpgan_visibility) + + info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" + return (res, info) + + def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) + res = Image.fromarray(restored_img) + + if codeformer_visibility < 1.0: + res = Image.blend(image, res, codeformer_visibility) + + info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" + return (res, info) + + + def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): + small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) + pixels = tuple(np.array(small).flatten().tolist()) + key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, + resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels + + c = cached_images.get(key) + if c is None: + upscaler = shared.sd_upscalers[scaler_index] + c = upscaler.scaler.upscale(image, resize, upscaler.data_path) + if mode == 1 and crop: + cropped = Image.new("RGB", (resize_w, resize_h)) + cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) + c = cropped + cached_images[key] = c + return c + + + def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]: + # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text + nonlocal upscaling_resize + if resize_mode == 1: + upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height) + crop_info = " (crop)" if upscaling_crop else "" + info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n" + return (image, info) + + @dataclass + class UpscaleParams: + upscaler_idx: int + blend_alpha: float + + def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: + blended_result: Image.Image = None + for upscaler in params: + res = upscale(image, upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" + if blended_result is None: + blended_result = res + else: + blended_result = Image.blend(blended_result, res, upscaler.blend_alpha) + return (blended_result, info) + + # Build a list of operations to run + facefix_ops: List[Callable] = [] + if gfpgan_visibility > 0: + facefix_ops.append(run_gfpgan) + if codeformer_visibility > 0: + facefix_ops.append(run_codeformer) + + upscale_ops: List[Callable] = [] + if resize_mode == 1: + upscale_ops.append(run_prepare_crop) + + if upscaling_resize != 0: + step_params: List[UpscaleParams] = [] + step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_1, blend_alpha=1.0 )) + if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: + step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility ) ) + + upscale_ops.append( partial(run_upscalers_blend, step_params) ) + + + extras_ops: List[Callable] = [] + if upscale_first: + extras_ops = upscale_ops + facefix_ops + else: + extras_ops = facefix_ops + upscale_ops + + for image, image_name in zip(imageArr, imageNameArr): if image is None: return outputs, "Please select an input image.", '' @@ -64,60 +160,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ image = image.convert("RGB") info = "" - - if gfpgan_visibility > 0: - restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) - res = Image.fromarray(restored_img) - - if gfpgan_visibility < 1.0: - res = Image.blend(image, res, gfpgan_visibility) - - info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" - image = res - - if codeformer_visibility > 0: - restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) - res = Image.fromarray(restored_img) - - if codeformer_visibility < 1.0: - res = Image.blend(image, res, codeformer_visibility) - - info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" - image = res - - if resize_mode == 1: - upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height) - crop_info = " (crop)" if upscaling_crop else "" - info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n" - - if upscaling_resize != 1.0: - def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): - small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) - pixels = tuple(np.array(small).flatten().tolist()) - key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, - resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels - - c = cached_images.get(key) - if c is None: - upscaler = shared.sd_upscalers[scaler_index] - c = upscaler.scaler.upscale(image, resize, upscaler.data_path) - if mode == 1 and crop: - cropped = Image.new("RGB", (resize_w, resize_h)) - cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) - c = cropped - cached_images[key] = c - - return c - - info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n" - res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - - if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: - res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) - info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n" - res = Image.blend(res, res2, extras_upscaler_2_visibility) - - image = res + # Run each operation on each image + for op in extras_ops: + image, info = op(image, info) while len(cached_images) > 2: del cached_images[next(iter(cached_images.keys()))] diff --git a/modules/ui.py b/modules/ui.py index 0a63e357..16b6ac49 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1119,6 +1119,9 @@ def create_ui(wrap_gradio_gpu_call): codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer) + with gr.Group(): + upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False) + submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') with gr.Column(variant='panel'): @@ -1152,6 +1155,7 @@ def create_ui(wrap_gradio_gpu_call): extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, + upscale_before_face_fix, ], outputs=[ result_images,