Merge branch 'master' into xygrid_infotext_improvements
This commit is contained in:
commit
32547f2721
32
.github/ISSUE_TEMPLATE/bug_report.md
vendored
32
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@ -1,32 +0,0 @@
|
|||||||
---
|
|
||||||
name: Bug report
|
|
||||||
about: Create a report to help us improve
|
|
||||||
title: ''
|
|
||||||
labels: bug-report
|
|
||||||
assignees: ''
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
**Describe the bug**
|
|
||||||
A clear and concise description of what the bug is.
|
|
||||||
|
|
||||||
**To Reproduce**
|
|
||||||
Steps to reproduce the behavior:
|
|
||||||
1. Go to '...'
|
|
||||||
2. Click on '....'
|
|
||||||
3. Scroll down to '....'
|
|
||||||
4. See error
|
|
||||||
|
|
||||||
**Expected behavior**
|
|
||||||
A clear and concise description of what you expected to happen.
|
|
||||||
|
|
||||||
**Screenshots**
|
|
||||||
If applicable, add screenshots to help explain your problem.
|
|
||||||
|
|
||||||
**Desktop (please complete the following information):**
|
|
||||||
- OS: [e.g. Windows, Linux]
|
|
||||||
- Browser [e.g. chrome, safari]
|
|
||||||
- Commit revision [looks like this: e68484500f76a33ba477d5a99340ab30451e557b; can be seen when launching webui.bat, or obtained manually by running `git rev-parse HEAD`]
|
|
||||||
|
|
||||||
**Additional context**
|
|
||||||
Add any other context about the problem here.
|
|
83
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
83
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
name: Bug Report
|
||||||
|
description: You think somethings is broken in the UI
|
||||||
|
title: "[Bug]: "
|
||||||
|
labels: ["bug-report"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: checkboxes
|
||||||
|
attributes:
|
||||||
|
label: Is there an existing issue for this?
|
||||||
|
description: Please search to see if an issue already exists for the bug you encountered, and that it hasn't been fixed in a recent build/commit.
|
||||||
|
options:
|
||||||
|
- label: I have searched the existing issues and checked the recent builds/commits
|
||||||
|
required: true
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
*Please fill this form with as much information as possible, don't forget to fill "What OS..." and "What browsers" and *provide screenshots if possible**
|
||||||
|
- type: textarea
|
||||||
|
id: what-did
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: Tell us what happened in a very clear and simple way
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: steps
|
||||||
|
attributes:
|
||||||
|
label: Steps to reproduce the problem
|
||||||
|
description: Please provide us with precise step by step information on how to reproduce the bug
|
||||||
|
value: |
|
||||||
|
1. Go to ....
|
||||||
|
2. Press ....
|
||||||
|
3. ...
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: what-should
|
||||||
|
attributes:
|
||||||
|
label: What should have happened?
|
||||||
|
description: tell what you think the normal behavior should be
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: input
|
||||||
|
id: commit
|
||||||
|
attributes:
|
||||||
|
label: Commit where the problem happens
|
||||||
|
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: dropdown
|
||||||
|
id: platforms
|
||||||
|
attributes:
|
||||||
|
label: What platforms do you use to access UI ?
|
||||||
|
multiple: true
|
||||||
|
options:
|
||||||
|
- Windows
|
||||||
|
- Linux
|
||||||
|
- MacOS
|
||||||
|
- iOS
|
||||||
|
- Android
|
||||||
|
- Other/Cloud
|
||||||
|
- type: dropdown
|
||||||
|
id: browsers
|
||||||
|
attributes:
|
||||||
|
label: What browsers do you use to access the UI ?
|
||||||
|
multiple: true
|
||||||
|
options:
|
||||||
|
- Mozilla Firefox
|
||||||
|
- Google Chrome
|
||||||
|
- Brave
|
||||||
|
- Apple Safari
|
||||||
|
- Microsoft Edge
|
||||||
|
- type: textarea
|
||||||
|
id: cmdargs
|
||||||
|
attributes:
|
||||||
|
label: Command Line Arguments
|
||||||
|
description: Are you using any launching parameters/command line arguments (modified webui-user.py) ? If yes, please write them below
|
||||||
|
render: Shell
|
||||||
|
- type: textarea
|
||||||
|
id: misc
|
||||||
|
attributes:
|
||||||
|
label: Additional information, context and logs
|
||||||
|
description: Please provide us with any relevant additional info, context or log output.
|
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
blank_issues_enabled: false
|
||||||
|
contact_links:
|
||||||
|
- name: WebUI Community Support
|
||||||
|
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
|
||||||
|
about: Please ask and answer questions here.
|
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
20
.github/ISSUE_TEMPLATE/feature_request.md
vendored
@ -1,20 +0,0 @@
|
|||||||
---
|
|
||||||
name: Feature request
|
|
||||||
about: Suggest an idea for this project
|
|
||||||
title: ''
|
|
||||||
labels: ''
|
|
||||||
assignees: ''
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
**Is your feature request related to a problem? Please describe.**
|
|
||||||
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
|
||||||
|
|
||||||
**Describe the solution you'd like**
|
|
||||||
A clear and concise description of what you want to happen.
|
|
||||||
|
|
||||||
**Describe alternatives you've considered**
|
|
||||||
A clear and concise description of any alternative solutions or features you've considered.
|
|
||||||
|
|
||||||
**Additional context**
|
|
||||||
Add any other context or screenshots about the feature request here.
|
|
40
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
40
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
name: Feature request
|
||||||
|
description: Suggest an idea for this project
|
||||||
|
title: "[Feature Request]: "
|
||||||
|
labels: ["suggestion"]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: checkboxes
|
||||||
|
attributes:
|
||||||
|
label: Is there an existing issue for this?
|
||||||
|
description: Please search to see if an issue already exists for the feature you want, and that it's not implemented in a recent build/commit.
|
||||||
|
options:
|
||||||
|
- label: I have searched the existing issues and checked the recent builds/commits
|
||||||
|
required: true
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
*Please fill this form with as much information as possible, provide screenshots and/or illustrations of the feature if possible*
|
||||||
|
- type: textarea
|
||||||
|
id: feature
|
||||||
|
attributes:
|
||||||
|
label: What would your feature do ?
|
||||||
|
description: Tell us about your feature in a very clear and simple way, and what problem it would solve
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: workflow
|
||||||
|
attributes:
|
||||||
|
label: Proposed workflow
|
||||||
|
description: Please provide us with step by step information on how you'd like the feature to be accessed and used
|
||||||
|
value: |
|
||||||
|
1. Go to ....
|
||||||
|
2. Press ....
|
||||||
|
3. ...
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: misc
|
||||||
|
attributes:
|
||||||
|
label: Additional information
|
||||||
|
description: Add any other context or screenshots about the feature request here.
|
28
.github/PULL_REQUEST_TEMPLATE/pull_request_template.md
vendored
Normal file
28
.github/PULL_REQUEST_TEMPLATE/pull_request_template.md
vendored
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
# Please read the [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) before submitting a pull request!
|
||||||
|
|
||||||
|
If you have a large change, pay special attention to this paragraph:
|
||||||
|
|
||||||
|
> Before making changes, if you think that your feature will result in more than 100 lines changing, find me and talk to me about the feature you are proposing. It pains me to reject the hard work someone else did, but I won't add everything to the repo, and it's better if the rejection happens before you have to waste time working on the feature.
|
||||||
|
|
||||||
|
Otherwise, after making sure you're following the rules described in wiki page, remove this section and continue on.
|
||||||
|
|
||||||
|
**Describe what this pull request is trying to achieve.**
|
||||||
|
|
||||||
|
A clear and concise description of what you're trying to accomplish with this, so your intent doesn't have to be extracted from your code.
|
||||||
|
|
||||||
|
**Additional notes and description of your changes**
|
||||||
|
|
||||||
|
More technical discussion about your changes go here, plus anything that a maintainer might have to specifically take a look at, or be wary of.
|
||||||
|
|
||||||
|
**Environment this was tested in**
|
||||||
|
|
||||||
|
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
|
||||||
|
- OS: [e.g. Windows, Linux]
|
||||||
|
- Browser [e.g. chrome, safari]
|
||||||
|
- Graphics card [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
|
||||||
|
|
||||||
|
**Screenshots or videos of your changes**
|
||||||
|
|
||||||
|
If applicable, screenshots or a video showing off your changes. If it edits an existing UI, it should ideally contain a comparison of what used to be there, before your changes were made.
|
||||||
|
|
||||||
|
This is **required** for anything that touches the user interface.
|
42
.github/workflows/on_pull_request.yaml
vendored
Normal file
42
.github/workflows/on_pull_request.yaml
vendored
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# See https://github.com/actions/starter-workflows/blob/1067f16ad8a1eac328834e4b0ae24f7d206f810d/ci/pylint.yml for original reference file
|
||||||
|
name: Run Linting/Formatting on Pull Requests
|
||||||
|
|
||||||
|
on:
|
||||||
|
- push
|
||||||
|
- pull_request
|
||||||
|
# See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onpull_requestpull_request_targetbranchesbranches-ignore for syntax docs
|
||||||
|
# if you want to filter out branches, delete the `- pull_request` and uncomment these lines :
|
||||||
|
# pull_request:
|
||||||
|
# branches:
|
||||||
|
# - master
|
||||||
|
# branches-ignore:
|
||||||
|
# - development
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
lint:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout Code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v3
|
||||||
|
with:
|
||||||
|
python-version: 3.10.6
|
||||||
|
- uses: actions/cache@v2
|
||||||
|
with:
|
||||||
|
path: ~/.cache/pip
|
||||||
|
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||||
|
restore-keys: |
|
||||||
|
${{ runner.os }}-pip-
|
||||||
|
- name: Install PyLint
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install pylint
|
||||||
|
# This lets PyLint check to see if it can resolve imports
|
||||||
|
- name: Install dependencies
|
||||||
|
run : |
|
||||||
|
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
||||||
|
python launch.py
|
||||||
|
- name: Analysing the code with pylint
|
||||||
|
run: |
|
||||||
|
pylint $(git ls-files '*.py')
|
31
.github/workflows/run_tests.yaml
vendored
Normal file
31
.github/workflows/run_tests.yaml
vendored
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
name: Run basic features tests on CPU with empty SD model
|
||||||
|
|
||||||
|
on:
|
||||||
|
- push
|
||||||
|
- pull_request
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout Code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.10.6
|
||||||
|
- uses: actions/cache@v3
|
||||||
|
with:
|
||||||
|
path: ~/.cache/pip
|
||||||
|
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||||
|
restore-keys: ${{ runner.os }}-pip-
|
||||||
|
- name: Run tests
|
||||||
|
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
||||||
|
- name: Upload main app stdout-stderr
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
if: always()
|
||||||
|
with:
|
||||||
|
name: stdout-stderr
|
||||||
|
path: |
|
||||||
|
test/stdout.txt
|
||||||
|
test/stderr.txt
|
7
.gitignore
vendored
7
.gitignore
vendored
@ -1,5 +1,6 @@
|
|||||||
__pycache__
|
__pycache__
|
||||||
*.ckpt
|
*.ckpt
|
||||||
|
*.safetensors
|
||||||
*.pth
|
*.pth
|
||||||
/ESRGAN/*
|
/ESRGAN/*
|
||||||
/SwinIR/*
|
/SwinIR/*
|
||||||
@ -17,6 +18,7 @@ __pycache__
|
|||||||
/webui.settings.bat
|
/webui.settings.bat
|
||||||
/embeddings
|
/embeddings
|
||||||
/styles.csv
|
/styles.csv
|
||||||
|
/params.txt
|
||||||
/styles.csv.bak
|
/styles.csv.bak
|
||||||
/webui-user.bat
|
/webui-user.bat
|
||||||
/webui-user.sh
|
/webui-user.sh
|
||||||
@ -25,3 +27,8 @@ __pycache__
|
|||||||
/.idea
|
/.idea
|
||||||
notification.mp3
|
notification.mp3
|
||||||
/SwinIR
|
/SwinIR
|
||||||
|
/textual_inversion
|
||||||
|
.vscode
|
||||||
|
/extensions
|
||||||
|
/test/stdout.txt
|
||||||
|
/test/stderr.txt
|
||||||
|
3
.pylintrc
Normal file
3
.pylintrc
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
|
||||||
|
[MESSAGES CONTROL]
|
||||||
|
disable=C,R,W,E,I
|
12
CODEOWNERS
Normal file
12
CODEOWNERS
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
* @AUTOMATIC1111
|
||||||
|
|
||||||
|
# if you were managing a localization and were removed from this file, this is because
|
||||||
|
# the intended way to do localizations now is via extensions. See:
|
||||||
|
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
|
||||||
|
# Make a repo with your localization and since you are still listed as a collaborator
|
||||||
|
# you can add it to the wiki page yourself. This change is because some people complained
|
||||||
|
# the git commit log is cluttered with things unrelated to almost everyone and
|
||||||
|
# because I believe this is the best overall for the project to handle localizations almost
|
||||||
|
# entirely without my oversight.
|
||||||
|
|
||||||
|
|
67
README.md
67
README.md
@ -11,39 +11,44 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- One click install and run script (but you still must install python and git)
|
- One click install and run script (but you still must install python and git)
|
||||||
- Outpainting
|
- Outpainting
|
||||||
- Inpainting
|
- Inpainting
|
||||||
- Prompt
|
- Color Sketch
|
||||||
- Stable Diffusion upscale
|
- Prompt Matrix
|
||||||
|
- Stable Diffusion Upscale
|
||||||
- Attention, specify parts of text that the model should pay more attention to
|
- Attention, specify parts of text that the model should pay more attention to
|
||||||
- a man in a ((txuedo)) - will pay more attentinoto tuxedo
|
- a man in a ((tuxedo)) - will pay more attention to tuxedo
|
||||||
- a man in a (txuedo:1.21) - alternative syntax
|
- a man in a (tuxedo:1.21) - alternative syntax
|
||||||
- Loopback, run img2img procvessing multiple times
|
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
|
||||||
|
- Loopback, run img2img processing multiple times
|
||||||
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
|
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
|
||||||
- Textual Inversion
|
- Textual Inversion
|
||||||
- have as many embeddings as you want and use any names you like for them
|
- have as many embeddings as you want and use any names you like for them
|
||||||
- use multiple embeddings with different numbers of vectors per token
|
- use multiple embeddings with different numbers of vectors per token
|
||||||
- works with half precision floating point numbers
|
- works with half precision floating point numbers
|
||||||
|
- train embeddings on 8GB (also reports of 6GB working)
|
||||||
- Extras tab with:
|
- Extras tab with:
|
||||||
- GFPGAN, neural network that fixes faces
|
- GFPGAN, neural network that fixes faces
|
||||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||||
- RealESRGAN, neural network upscaler
|
- RealESRGAN, neural network upscaler
|
||||||
- ESRGAN, neural network upscaler with a lot of third party models
|
- ESRGAN, neural network upscaler with a lot of third party models
|
||||||
- SwinIR, neural network upscaler
|
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
|
||||||
- LDSR, Latent diffusion super resolution upscaling
|
- LDSR, Latent diffusion super resolution upscaling
|
||||||
- Resizing aspect ratio options
|
- Resizing aspect ratio options
|
||||||
- Sampling method selection
|
- Sampling method selection
|
||||||
|
- Adjust sampler eta values (noise multiplier)
|
||||||
|
- More advanced noise setting options
|
||||||
- Interrupt processing at any time
|
- Interrupt processing at any time
|
||||||
- 4GB video card support (also reports of 2GB working)
|
- 4GB video card support (also reports of 2GB working)
|
||||||
- Correct seeds for batches
|
- Correct seeds for batches
|
||||||
- Prompt length validation
|
- Live prompt token length validation
|
||||||
- get length of prompt in tokensas you type
|
|
||||||
- get a warning after geenration if some text was truncated
|
|
||||||
- Generation parameters
|
- Generation parameters
|
||||||
- parameters you used to generate images are saved with that image
|
- parameters you used to generate images are saved with that image
|
||||||
- in PNG chunks for PNG, in EXIF for JPEG
|
- in PNG chunks for PNG, in EXIF for JPEG
|
||||||
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
||||||
- can be disabled in settings
|
- can be disabled in settings
|
||||||
|
- drag and drop an image/text-parameters to promptbox
|
||||||
|
- Read Generation Parameters Button, loads parameters in promptbox to UI
|
||||||
- Settings page
|
- Settings page
|
||||||
- Running arbitrary python code from UI (must run with commandline flag to enable)
|
- Running arbitrary python code from UI (must run with --allow-code to enable)
|
||||||
- Mouseover hints for most UI elements
|
- Mouseover hints for most UI elements
|
||||||
- Possible to change defaults/mix/max/step values for UI elements via text config
|
- Possible to change defaults/mix/max/step values for UI elements via text config
|
||||||
- Random artist button
|
- Random artist button
|
||||||
@ -56,19 +61,37 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- CLIP interrogator, a button that tries to guess prompt from an image
|
- CLIP interrogator, a button that tries to guess prompt from an image
|
||||||
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
|
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
|
||||||
- Batch Processing, process a group of files using img2img
|
- Batch Processing, process a group of files using img2img
|
||||||
- Img2img Alternative
|
- Img2img Alternative, reverse Euler method of cross attention control
|
||||||
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
|
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
|
||||||
- Reloading checkpoints on the fly
|
- Reloading checkpoints on the fly
|
||||||
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
|
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
|
||||||
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
||||||
|
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
|
||||||
|
- separate prompts using uppercase `AND`
|
||||||
|
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
||||||
|
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||||
|
- DeepDanbooru integration, creates danbooru style tags for anime prompts
|
||||||
|
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
||||||
|
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
|
||||||
|
- Generate forever option
|
||||||
|
- Training tab
|
||||||
|
- hypernetworks and embeddings options
|
||||||
|
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
|
||||||
|
- Clip skip
|
||||||
|
- Use Hypernetworks
|
||||||
|
- Use VAEs
|
||||||
|
- Estimated completion time in progress bar
|
||||||
|
- API
|
||||||
|
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||||
|
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||||
|
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
||||||
|
|
||||||
## Installation and Running
|
## Installation and Running
|
||||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||||
|
|
||||||
Alternatively, use Google Colab:
|
Alternatively, use online services (like Google Colab):
|
||||||
|
|
||||||
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl)
|
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
|
||||||
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
|
|
||||||
|
|
||||||
### Automatic Installation on Windows
|
### Automatic Installation on Windows
|
||||||
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
||||||
@ -104,17 +127,27 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
|
|||||||
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
||||||
|
|
||||||
## Credits
|
## Credits
|
||||||
|
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
|
||||||
|
|
||||||
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
||||||
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
||||||
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
||||||
- CodeFormer - https://github.com/sczhou/CodeFormer
|
- CodeFormer - https://github.com/sczhou/CodeFormer
|
||||||
- ESRGAN - https://github.com/xinntao/ESRGAN
|
- ESRGAN - https://github.com/xinntao/ESRGAN
|
||||||
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
||||||
|
- Swin2SR - https://github.com/mv-lab/swin2sr
|
||||||
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
||||||
|
- MiDaS - https://github.com/isl-org/MiDaS
|
||||||
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
||||||
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
||||||
|
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
||||||
|
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
||||||
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
||||||
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
||||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||||
|
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
||||||
|
- xformers - https://github.com/facebookresearch/xformers
|
||||||
|
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
||||||
|
- Security advice - RyotaK
|
||||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||||
- (You)
|
- (You)
|
||||||
|
@ -523,7 +523,6 @@ Affandi,0.7170285,nudity
|
|||||||
Diane Arbus,0.655138,digipa-high-impact
|
Diane Arbus,0.655138,digipa-high-impact
|
||||||
Joseph Ducreux,0.65247905,digipa-high-impact
|
Joseph Ducreux,0.65247905,digipa-high-impact
|
||||||
Berthe Morisot,0.7165984,fineart
|
Berthe Morisot,0.7165984,fineart
|
||||||
Hilma AF Klint,0.71643853,scribbles
|
|
||||||
Hilma af Klint,0.71643853,scribbles
|
Hilma af Klint,0.71643853,scribbles
|
||||||
Filippino Lippi,0.7163017,fineart
|
Filippino Lippi,0.7163017,fineart
|
||||||
Leonid Afremov,0.7163005,fineart
|
Leonid Afremov,0.7163005,fineart
|
||||||
@ -738,14 +737,12 @@ Abraham Mignon,0.60605425,fineart
|
|||||||
Albert Bloch,0.69573116,nudity
|
Albert Bloch,0.69573116,nudity
|
||||||
Charles Dana Gibson,0.67155975,fineart
|
Charles Dana Gibson,0.67155975,fineart
|
||||||
Alexandre-Évariste Fragonard,0.6507174,fineart
|
Alexandre-Évariste Fragonard,0.6507174,fineart
|
||||||
Alexandre-Évariste Fragonard,0.6507174,fineart
|
|
||||||
Ernst Fuchs,0.6953538,nudity
|
Ernst Fuchs,0.6953538,nudity
|
||||||
Alfredo Jaar,0.6952965,digipa-high-impact
|
Alfredo Jaar,0.6952965,digipa-high-impact
|
||||||
Judy Chicago,0.6952246,weird
|
Judy Chicago,0.6952246,weird
|
||||||
Frans van Mieris the Younger,0.6951849,fineart
|
Frans van Mieris the Younger,0.6951849,fineart
|
||||||
Aertgen van Leyden,0.6951305,fineart
|
Aertgen van Leyden,0.6951305,fineart
|
||||||
Emily Carr,0.69512105,fineart
|
Emily Carr,0.69512105,fineart
|
||||||
Frances Macdonald,0.6950408,scribbles
|
|
||||||
Frances MacDonald,0.6950408,scribbles
|
Frances MacDonald,0.6950408,scribbles
|
||||||
Hannah Höch,0.69495845,scribbles
|
Hannah Höch,0.69495845,scribbles
|
||||||
Gillis Rombouts,0.58770025,fineart
|
Gillis Rombouts,0.58770025,fineart
|
||||||
@ -895,7 +892,6 @@ Richard McGuire,0.6820089,scribbles
|
|||||||
Anni Albers,0.65708244,digipa-high-impact
|
Anni Albers,0.65708244,digipa-high-impact
|
||||||
Aleksey Savrasov,0.65207493,fineart
|
Aleksey Savrasov,0.65207493,fineart
|
||||||
Wayne Barlowe,0.6537874,fineart
|
Wayne Barlowe,0.6537874,fineart
|
||||||
Giorgio De Chirico,0.6815907,fineart
|
|
||||||
Giorgio de Chirico,0.6815907,fineart
|
Giorgio de Chirico,0.6815907,fineart
|
||||||
Ernest Procter,0.6815795,fineart
|
Ernest Procter,0.6815795,fineart
|
||||||
Adriaen Brouwer,0.6815058,fineart
|
Adriaen Brouwer,0.6815058,fineart
|
||||||
@ -1045,7 +1041,6 @@ Bakemono Zukushi,0.67051035,anime
|
|||||||
Lucy Madox Brown,0.67032814,fineart
|
Lucy Madox Brown,0.67032814,fineart
|
||||||
Paul Wonner,0.6700563,scribbles
|
Paul Wonner,0.6700563,scribbles
|
||||||
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
|
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
|
||||||
Guido Borelli da Caluso,0.66966087,digipa-high-impact
|
|
||||||
Emil Alzamora,0.5844039,nudity
|
Emil Alzamora,0.5844039,nudity
|
||||||
Heinrich Brocksieper,0.64469147,fineart
|
Heinrich Brocksieper,0.64469147,fineart
|
||||||
Dan Smith,0.669563,digipa-high-impact
|
Dan Smith,0.669563,digipa-high-impact
|
||||||
@ -1242,7 +1237,6 @@ Betty Churcher,0.65387225,fineart
|
|||||||
Claes Corneliszoon Moeyaert,0.65386075,fineart
|
Claes Corneliszoon Moeyaert,0.65386075,fineart
|
||||||
David Bomberg,0.6537477,fineart
|
David Bomberg,0.6537477,fineart
|
||||||
Abraham Bosschaert,0.6535562,fineart
|
Abraham Bosschaert,0.6535562,fineart
|
||||||
Giuseppe De Nittis,0.65354455,fineart
|
|
||||||
Giuseppe de Nittis,0.65354455,fineart
|
Giuseppe de Nittis,0.65354455,fineart
|
||||||
John La Farge,0.65342575,fineart
|
John La Farge,0.65342575,fineart
|
||||||
Frits Thaulow,0.65341854,fineart
|
Frits Thaulow,0.65341854,fineart
|
||||||
@ -1523,7 +1517,6 @@ Gertrude Harvey,0.5903887,fineart
|
|||||||
Grant Wood,0.6266253,fineart
|
Grant Wood,0.6266253,fineart
|
||||||
Fyodor Vasilyev,0.5234919,digipa-med-impact
|
Fyodor Vasilyev,0.5234919,digipa-med-impact
|
||||||
Cagnaccio di San Pietro,0.6261671,fineart
|
Cagnaccio di San Pietro,0.6261671,fineart
|
||||||
Cagnaccio Di San Pietro,0.6261671,fineart
|
|
||||||
Doris Boulton-Maude,0.62593174,fineart
|
Doris Boulton-Maude,0.62593174,fineart
|
||||||
Adolf Hirémy-Hirschl,0.5946784,fineart
|
Adolf Hirémy-Hirschl,0.5946784,fineart
|
||||||
Harold von Schmidt,0.6256755,fineart
|
Harold von Schmidt,0.6256755,fineart
|
||||||
@ -2412,7 +2405,6 @@ Hermann Feierabend,0.5346168,digipa-high-impact
|
|||||||
Antonio Donghi,0.4610982,digipa-low-impact
|
Antonio Donghi,0.4610982,digipa-low-impact
|
||||||
Adonna Khare,0.4858036,digipa-med-impact
|
Adonna Khare,0.4858036,digipa-med-impact
|
||||||
James Stokoe,0.5015107,digipa-med-impact
|
James Stokoe,0.5015107,digipa-med-impact
|
||||||
Art & Language,0.5341332,digipa-high-impact
|
|
||||||
Agustín Fernández,0.53403986,fineart
|
Agustín Fernández,0.53403986,fineart
|
||||||
Germán Londoño,0.5338712,fineart
|
Germán Londoño,0.5338712,fineart
|
||||||
Emmanuelle Moureaux,0.5335641,digipa-high-impact
|
Emmanuelle Moureaux,0.5335641,digipa-high-impact
|
||||||
|
|
72
configs/alt-diffusion-inference.yaml
Normal file
72
configs/alt-diffusion-inference.yaml
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: modules.xlmr.BertSeriesModelWithTransformation
|
||||||
|
params:
|
||||||
|
name: "XLMR-Large"
|
70
configs/v1-inference.yaml
Normal file
70
configs/v1-inference.yaml
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
use_ema: False
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
@ -3,9 +3,9 @@ channels:
|
|||||||
- pytorch
|
- pytorch
|
||||||
- defaults
|
- defaults
|
||||||
dependencies:
|
dependencies:
|
||||||
- python=3.8.5
|
- python=3.10
|
||||||
- pip=20.3
|
- pip=22.2.2
|
||||||
- cudatoolkit=11.3
|
- cudatoolkit=11.3
|
||||||
- pytorch=1.11.0
|
- pytorch=1.12.1
|
||||||
- torchvision=0.12.0
|
- torchvision=0.13.1
|
||||||
- numpy=1.19.2
|
- numpy=1.23.1
|
@ -1,3 +1,4 @@
|
|||||||
|
import os
|
||||||
import gc
|
import gc
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
@ -8,27 +9,49 @@ import torchvision
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
import safetensors.torch
|
||||||
|
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
from ldm.util import instantiate_from_config, ismap
|
from ldm.util import instantiate_from_config, ismap
|
||||||
|
from modules import shared, sd_hijack
|
||||||
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
warnings.filterwarnings("ignore", category=UserWarning)
|
||||||
|
|
||||||
|
cached_ldsr_model: torch.nn.Module = None
|
||||||
|
|
||||||
|
|
||||||
# Create LDSR Class
|
# Create LDSR Class
|
||||||
class LDSR:
|
class LDSR:
|
||||||
def load_model_from_config(self, half_attention):
|
def load_model_from_config(self, half_attention):
|
||||||
print(f"Loading model from {self.modelPath}")
|
global cached_ldsr_model
|
||||||
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
|
||||||
sd = pl_sd["state_dict"]
|
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
||||||
config = OmegaConf.load(self.yamlPath)
|
print("Loading model from cache")
|
||||||
model = instantiate_from_config(config.model)
|
model: torch.nn.Module = cached_ldsr_model
|
||||||
model.load_state_dict(sd, strict=False)
|
else:
|
||||||
model.cuda()
|
print(f"Loading model from {self.modelPath}")
|
||||||
if half_attention:
|
_, extension = os.path.splitext(self.modelPath)
|
||||||
model = model.half()
|
if extension.lower() == ".safetensors":
|
||||||
|
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
||||||
|
else:
|
||||||
|
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
||||||
|
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
||||||
|
config = OmegaConf.load(self.yamlPath)
|
||||||
|
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
||||||
|
model: torch.nn.Module = instantiate_from_config(config.model)
|
||||||
|
model.load_state_dict(sd, strict=False)
|
||||||
|
model = model.to(shared.device)
|
||||||
|
if half_attention:
|
||||||
|
model = model.half()
|
||||||
|
if shared.cmd_opts.opt_channelslast:
|
||||||
|
model = model.to(memory_format=torch.channels_last)
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.hijack(model) # apply optimization
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if shared.opts.ldsr_cached:
|
||||||
|
cached_ldsr_model = model
|
||||||
|
|
||||||
model.eval()
|
|
||||||
return {"model": model}
|
return {"model": model}
|
||||||
|
|
||||||
def __init__(self, model_path, yaml_path):
|
def __init__(self, model_path, yaml_path):
|
||||||
@ -93,7 +116,8 @@ class LDSR:
|
|||||||
down_sample_method = 'Lanczos'
|
down_sample_method = 'Lanczos'
|
||||||
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
if torch.cuda.is_available:
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
im_og = image
|
im_og = image
|
||||||
width_og, height_og = im_og.size
|
width_og, height_og = im_og.size
|
||||||
@ -101,8 +125,8 @@ class LDSR:
|
|||||||
down_sample_rate = target_scale / 4
|
down_sample_rate = target_scale / 4
|
||||||
wd = width_og * down_sample_rate
|
wd = width_og * down_sample_rate
|
||||||
hd = height_og * down_sample_rate
|
hd = height_og * down_sample_rate
|
||||||
width_downsampled_pre = int(wd)
|
width_downsampled_pre = int(np.ceil(wd))
|
||||||
height_downsampled_pre = int(hd)
|
height_downsampled_pre = int(np.ceil(hd))
|
||||||
|
|
||||||
if down_sample_rate != 1:
|
if down_sample_rate != 1:
|
||||||
print(
|
print(
|
||||||
@ -110,7 +134,12 @@ class LDSR:
|
|||||||
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
||||||
else:
|
else:
|
||||||
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
||||||
logs = self.run(model["model"], im_og, diffusion_steps, eta)
|
|
||||||
|
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
|
||||||
|
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
|
||||||
|
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
||||||
|
|
||||||
|
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
|
||||||
|
|
||||||
sample = logs["sample"]
|
sample = logs["sample"]
|
||||||
sample = sample.detach().cpu()
|
sample = sample.detach().cpu()
|
||||||
@ -120,9 +149,14 @@ class LDSR:
|
|||||||
sample = np.transpose(sample, (0, 2, 3, 1))
|
sample = np.transpose(sample, (0, 2, 3, 1))
|
||||||
a = Image.fromarray(sample[0])
|
a = Image.fromarray(sample[0])
|
||||||
|
|
||||||
|
# remove padding
|
||||||
|
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
|
||||||
|
|
||||||
del model
|
del model
|
||||||
gc.collect()
|
gc.collect()
|
||||||
torch.cuda.empty_cache()
|
if torch.cuda.is_available:
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
return a
|
return a
|
||||||
|
|
||||||
|
|
||||||
@ -137,7 +171,7 @@ def get_cond(selected_path):
|
|||||||
c = rearrange(c, '1 c h w -> 1 h w c')
|
c = rearrange(c, '1 c h w -> 1 h w c')
|
||||||
c = 2. * c - 1.
|
c = 2. * c - 1.
|
||||||
|
|
||||||
c = c.to(torch.device("cuda"))
|
c = c.to(shared.device)
|
||||||
example["LR_image"] = c
|
example["LR_image"] = c
|
||||||
example["image"] = c_up
|
example["image"] = c_up
|
||||||
|
|
6
extensions-builtin/LDSR/preload.py
Normal file
6
extensions-builtin/LDSR/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
|
@ -5,15 +5,14 @@ import traceback
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.ldsr_model_arch import LDSR
|
from ldsr_model_arch import LDSR
|
||||||
from modules import shared
|
from modules import shared, script_callbacks
|
||||||
from modules.paths import models_path
|
import sd_hijack_autoencoder, sd_hijack_ddpm_v1
|
||||||
|
|
||||||
|
|
||||||
class UpscalerLDSR(Upscaler):
|
class UpscalerLDSR(Upscaler):
|
||||||
def __init__(self, user_path):
|
def __init__(self, user_path):
|
||||||
self.name = "LDSR"
|
self.name = "LDSR"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = user_path
|
self.user_path = user_path
|
||||||
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
||||||
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
||||||
@ -26,6 +25,7 @@ class UpscalerLDSR(Upscaler):
|
|||||||
yaml_path = os.path.join(self.model_path, "project.yaml")
|
yaml_path = os.path.join(self.model_path, "project.yaml")
|
||||||
old_model_path = os.path.join(self.model_path, "model.pth")
|
old_model_path = os.path.join(self.model_path, "model.pth")
|
||||||
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
||||||
|
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
|
||||||
if os.path.exists(yaml_path):
|
if os.path.exists(yaml_path):
|
||||||
statinfo = os.stat(yaml_path)
|
statinfo = os.stat(yaml_path)
|
||||||
if statinfo.st_size >= 10485760:
|
if statinfo.st_size >= 10485760:
|
||||||
@ -34,8 +34,11 @@ class UpscalerLDSR(Upscaler):
|
|||||||
if os.path.exists(old_model_path):
|
if os.path.exists(old_model_path):
|
||||||
print("Renaming model from model.pth to model.ckpt")
|
print("Renaming model from model.pth to model.ckpt")
|
||||||
os.rename(old_model_path, new_model_path)
|
os.rename(old_model_path, new_model_path)
|
||||||
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
if os.path.exists(safetensors_model_path):
|
||||||
file_name="model.ckpt", progress=True)
|
model = safetensors_model_path
|
||||||
|
else:
|
||||||
|
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
||||||
|
file_name="model.ckpt", progress=True)
|
||||||
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
||||||
file_name="project.yaml", progress=True)
|
file_name="project.yaml", progress=True)
|
||||||
|
|
||||||
@ -54,3 +57,13 @@ class UpscalerLDSR(Upscaler):
|
|||||||
return img
|
return img
|
||||||
ddim_steps = shared.opts.ldsr_steps
|
ddim_steps = shared.opts.ldsr_steps
|
||||||
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings():
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
|
||||||
|
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_ui_settings(on_ui_settings)
|
286
extensions-builtin/LDSR/sd_hijack_autoencoder.py
Normal file
286
extensions-builtin/LDSR/sd_hijack_autoencoder.py
Normal file
@ -0,0 +1,286 @@
|
|||||||
|
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
|
||||||
|
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
|
||||||
|
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import pytorch_lightning as pl
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||||
|
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
|
import ldm.models.autoencoder
|
||||||
|
|
||||||
|
class VQModel(pl.LightningModule):
|
||||||
|
def __init__(self,
|
||||||
|
ddconfig,
|
||||||
|
lossconfig,
|
||||||
|
n_embed,
|
||||||
|
embed_dim,
|
||||||
|
ckpt_path=None,
|
||||||
|
ignore_keys=[],
|
||||||
|
image_key="image",
|
||||||
|
colorize_nlabels=None,
|
||||||
|
monitor=None,
|
||||||
|
batch_resize_range=None,
|
||||||
|
scheduler_config=None,
|
||||||
|
lr_g_factor=1.0,
|
||||||
|
remap=None,
|
||||||
|
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||||
|
use_ema=False
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.n_embed = n_embed
|
||||||
|
self.image_key = image_key
|
||||||
|
self.encoder = Encoder(**ddconfig)
|
||||||
|
self.decoder = Decoder(**ddconfig)
|
||||||
|
self.loss = instantiate_from_config(lossconfig)
|
||||||
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
||||||
|
remap=remap,
|
||||||
|
sane_index_shape=sane_index_shape)
|
||||||
|
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
||||||
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||||
|
if colorize_nlabels is not None:
|
||||||
|
assert type(colorize_nlabels)==int
|
||||||
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||||
|
if monitor is not None:
|
||||||
|
self.monitor = monitor
|
||||||
|
self.batch_resize_range = batch_resize_range
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
||||||
|
|
||||||
|
self.use_ema = use_ema
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema = LitEma(self)
|
||||||
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||||
|
|
||||||
|
if ckpt_path is not None:
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||||
|
self.scheduler_config = scheduler_config
|
||||||
|
self.lr_g_factor = lr_g_factor
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def ema_scope(self, context=None):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.store(self.parameters())
|
||||||
|
self.model_ema.copy_to(self)
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Switched to EMA weights")
|
||||||
|
try:
|
||||||
|
yield None
|
||||||
|
finally:
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema.restore(self.parameters())
|
||||||
|
if context is not None:
|
||||||
|
print(f"{context}: Restored training weights")
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||||
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||||
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||||
|
if len(missing) > 0:
|
||||||
|
print(f"Missing Keys: {missing}")
|
||||||
|
print(f"Unexpected Keys: {unexpected}")
|
||||||
|
|
||||||
|
def on_train_batch_end(self, *args, **kwargs):
|
||||||
|
if self.use_ema:
|
||||||
|
self.model_ema(self)
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
return quant, emb_loss, info
|
||||||
|
|
||||||
|
def encode_to_prequant(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, quant):
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def decode_code(self, code_b):
|
||||||
|
quant_b = self.quantize.embed_code(code_b)
|
||||||
|
dec = self.decode(quant_b)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
def forward(self, input, return_pred_indices=False):
|
||||||
|
quant, diff, (_,_,ind) = self.encode(input)
|
||||||
|
dec = self.decode(quant)
|
||||||
|
if return_pred_indices:
|
||||||
|
return dec, diff, ind
|
||||||
|
return dec, diff
|
||||||
|
|
||||||
|
def get_input(self, batch, k):
|
||||||
|
x = batch[k]
|
||||||
|
if len(x.shape) == 3:
|
||||||
|
x = x[..., None]
|
||||||
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||||
|
if self.batch_resize_range is not None:
|
||||||
|
lower_size = self.batch_resize_range[0]
|
||||||
|
upper_size = self.batch_resize_range[1]
|
||||||
|
if self.global_step <= 4:
|
||||||
|
# do the first few batches with max size to avoid later oom
|
||||||
|
new_resize = upper_size
|
||||||
|
else:
|
||||||
|
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
||||||
|
if new_resize != x.shape[2]:
|
||||||
|
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
||||||
|
x = x.detach()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||||
|
# https://github.com/pytorch/pytorch/issues/37142
|
||||||
|
# try not to fool the heuristics
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
|
||||||
|
if optimizer_idx == 0:
|
||||||
|
# autoencode
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train",
|
||||||
|
predicted_indices=ind)
|
||||||
|
|
||||||
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return aeloss
|
||||||
|
|
||||||
|
if optimizer_idx == 1:
|
||||||
|
# discriminator
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
||||||
|
last_layer=self.get_last_layer(), split="train")
|
||||||
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
||||||
|
return discloss
|
||||||
|
|
||||||
|
def validation_step(self, batch, batch_idx):
|
||||||
|
log_dict = self._validation_step(batch, batch_idx)
|
||||||
|
with self.ema_scope():
|
||||||
|
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
||||||
|
return log_dict
|
||||||
|
|
||||||
|
def _validation_step(self, batch, batch_idx, suffix=""):
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||||
|
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
|
||||||
|
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
||||||
|
self.global_step,
|
||||||
|
last_layer=self.get_last_layer(),
|
||||||
|
split="val"+suffix,
|
||||||
|
predicted_indices=ind
|
||||||
|
)
|
||||||
|
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log(f"val{suffix}/rec_loss", rec_loss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
self.log(f"val{suffix}/aeloss", aeloss,
|
||||||
|
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
||||||
|
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
||||||
|
del log_dict_ae[f"val{suffix}/rec_loss"]
|
||||||
|
self.log_dict(log_dict_ae)
|
||||||
|
self.log_dict(log_dict_disc)
|
||||||
|
return self.log_dict
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
lr_d = self.learning_rate
|
||||||
|
lr_g = self.lr_g_factor*self.learning_rate
|
||||||
|
print("lr_d", lr_d)
|
||||||
|
print("lr_g", lr_g)
|
||||||
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
||||||
|
list(self.decoder.parameters())+
|
||||||
|
list(self.quantize.parameters())+
|
||||||
|
list(self.quant_conv.parameters())+
|
||||||
|
list(self.post_quant_conv.parameters()),
|
||||||
|
lr=lr_g, betas=(0.5, 0.9))
|
||||||
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||||
|
lr=lr_d, betas=(0.5, 0.9))
|
||||||
|
|
||||||
|
if self.scheduler_config is not None:
|
||||||
|
scheduler = instantiate_from_config(self.scheduler_config)
|
||||||
|
|
||||||
|
print("Setting up LambdaLR scheduler...")
|
||||||
|
scheduler = [
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
||||||
|
'interval': 'step',
|
||||||
|
'frequency': 1
|
||||||
|
},
|
||||||
|
]
|
||||||
|
return [opt_ae, opt_disc], scheduler
|
||||||
|
return [opt_ae, opt_disc], []
|
||||||
|
|
||||||
|
def get_last_layer(self):
|
||||||
|
return self.decoder.conv_out.weight
|
||||||
|
|
||||||
|
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
||||||
|
log = dict()
|
||||||
|
x = self.get_input(batch, self.image_key)
|
||||||
|
x = x.to(self.device)
|
||||||
|
if only_inputs:
|
||||||
|
log["inputs"] = x
|
||||||
|
return log
|
||||||
|
xrec, _ = self(x)
|
||||||
|
if x.shape[1] > 3:
|
||||||
|
# colorize with random projection
|
||||||
|
assert xrec.shape[1] > 3
|
||||||
|
x = self.to_rgb(x)
|
||||||
|
xrec = self.to_rgb(xrec)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstructions"] = xrec
|
||||||
|
if plot_ema:
|
||||||
|
with self.ema_scope():
|
||||||
|
xrec_ema, _ = self(x)
|
||||||
|
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
||||||
|
log["reconstructions_ema"] = xrec_ema
|
||||||
|
return log
|
||||||
|
|
||||||
|
def to_rgb(self, x):
|
||||||
|
assert self.image_key == "segmentation"
|
||||||
|
if not hasattr(self, "colorize"):
|
||||||
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||||
|
x = F.conv2d(x, weight=self.colorize)
|
||||||
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VQModelInterface(VQModel):
|
||||||
|
def __init__(self, embed_dim, *args, **kwargs):
|
||||||
|
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
|
||||||
|
def encode(self, x):
|
||||||
|
h = self.encoder(x)
|
||||||
|
h = self.quant_conv(h)
|
||||||
|
return h
|
||||||
|
|
||||||
|
def decode(self, h, force_not_quantize=False):
|
||||||
|
# also go through quantization layer
|
||||||
|
if not force_not_quantize:
|
||||||
|
quant, emb_loss, info = self.quantize(h)
|
||||||
|
else:
|
||||||
|
quant = h
|
||||||
|
quant = self.post_quant_conv(quant)
|
||||||
|
dec = self.decoder(quant)
|
||||||
|
return dec
|
||||||
|
|
||||||
|
setattr(ldm.models.autoencoder, "VQModel", VQModel)
|
||||||
|
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)
|
1449
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Normal file
1449
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Normal file
File diff suppressed because it is too large
Load Diff
6
extensions-builtin/ScuNET/preload.py
Normal file
6
extensions-builtin/ScuNET/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
|
@ -8,49 +8,54 @@ import torch
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import shared, modelloader
|
from modules import devices, modelloader
|
||||||
from modules.bsrgan_model_arch import RRDBNet
|
from scunet_model_arch import SCUNet as net
|
||||||
from modules.paths import models_path
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
self.name = "BSRGAN"
|
self.name = "ScuNET"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
self.model_name = "ScuNET GAN"
|
||||||
self.model_name = "BSRGAN 4x"
|
self.model_name2 = "ScuNET PSNR"
|
||||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
||||||
|
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
super().__init__()
|
super().__init__()
|
||||||
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
model_paths = self.find_models(ext_filter=[".pth"])
|
||||||
scalers = []
|
scalers = []
|
||||||
if len(model_paths) == 0:
|
add_model2 = True
|
||||||
scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
|
|
||||||
scalers.append(scaler_data)
|
|
||||||
for file in model_paths:
|
for file in model_paths:
|
||||||
if "http" in file:
|
if "http" in file:
|
||||||
name = self.model_name
|
name = self.model_name
|
||||||
else:
|
else:
|
||||||
name = modelloader.friendly_name(file)
|
name = modelloader.friendly_name(file)
|
||||||
|
if name == self.model_name2 or file == self.model_url2:
|
||||||
|
add_model2 = False
|
||||||
try:
|
try:
|
||||||
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
||||||
scalers.append(scaler_data)
|
scalers.append(scaler_data)
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error loading BSRGAN model: {file}", file=sys.stderr)
|
print(f"Error loading ScuNET model: {file}", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
if add_model2:
|
||||||
|
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
|
||||||
|
scalers.append(scaler_data2)
|
||||||
self.scalers = scalers
|
self.scalers = scalers
|
||||||
|
|
||||||
def do_upscale(self, img: PIL.Image, selected_file):
|
def do_upscale(self, img: PIL.Image, selected_file):
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
model = self.load_model(selected_file)
|
model = self.load_model(selected_file)
|
||||||
if model is None:
|
if model is None:
|
||||||
return img
|
return img
|
||||||
model.to(shared.device)
|
|
||||||
torch.cuda.empty_cache()
|
device = devices.get_device_for('scunet')
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(shared.device)
|
img = img.unsqueeze(0).to(device)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = model(img)
|
output = model(img)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
@ -61,18 +66,22 @@ class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
|||||||
return PIL.Image.fromarray(output, 'RGB')
|
return PIL.Image.fromarray(output, 'RGB')
|
||||||
|
|
||||||
def load_model(self, path: str):
|
def load_model(self, path: str):
|
||||||
|
device = devices.get_device_for('scunet')
|
||||||
if "http" in path:
|
if "http" in path:
|
||||||
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
|
||||||
progress=True)
|
progress=True)
|
||||||
else:
|
else:
|
||||||
filename = path
|
filename = path
|
||||||
if not os.path.exists(filename) or filename is None:
|
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
|
||||||
print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr)
|
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
|
||||||
return None
|
return None
|
||||||
model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network
|
|
||||||
|
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
|
||||||
model.load_state_dict(torch.load(filename), strict=True)
|
model.load_state_dict(torch.load(filename), strict=True)
|
||||||
model.eval()
|
model.eval()
|
||||||
for k, v in model.named_parameters():
|
for k, v in model.named_parameters():
|
||||||
v.requires_grad = False
|
v.requires_grad = False
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
265
extensions-builtin/ScuNET/scunet_model_arch.py
Normal file
265
extensions-builtin/ScuNET/scunet_model_arch.py
Normal file
@ -0,0 +1,265 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from einops import rearrange
|
||||||
|
from einops.layers.torch import Rearrange
|
||||||
|
from timm.models.layers import trunc_normal_, DropPath
|
||||||
|
|
||||||
|
|
||||||
|
class WMSA(nn.Module):
|
||||||
|
""" Self-attention module in Swin Transformer
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
||||||
|
super(WMSA, self).__init__()
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.output_dim = output_dim
|
||||||
|
self.head_dim = head_dim
|
||||||
|
self.scale = self.head_dim ** -0.5
|
||||||
|
self.n_heads = input_dim // head_dim
|
||||||
|
self.window_size = window_size
|
||||||
|
self.type = type
|
||||||
|
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
||||||
|
|
||||||
|
self.relative_position_params = nn.Parameter(
|
||||||
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
|
||||||
|
|
||||||
|
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
||||||
|
|
||||||
|
trunc_normal_(self.relative_position_params, std=.02)
|
||||||
|
self.relative_position_params = torch.nn.Parameter(
|
||||||
|
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
|
||||||
|
2).transpose(
|
||||||
|
0, 1))
|
||||||
|
|
||||||
|
def generate_mask(self, h, w, p, shift):
|
||||||
|
""" generating the mask of SW-MSA
|
||||||
|
Args:
|
||||||
|
shift: shift parameters in CyclicShift.
|
||||||
|
Returns:
|
||||||
|
attn_mask: should be (1 1 w p p),
|
||||||
|
"""
|
||||||
|
# supporting square.
|
||||||
|
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
|
||||||
|
if self.type == 'W':
|
||||||
|
return attn_mask
|
||||||
|
|
||||||
|
s = p - shift
|
||||||
|
attn_mask[-1, :, :s, :, s:, :] = True
|
||||||
|
attn_mask[-1, :, s:, :, :s, :] = True
|
||||||
|
attn_mask[:, -1, :, :s, :, s:] = True
|
||||||
|
attn_mask[:, -1, :, s:, :, :s] = True
|
||||||
|
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
|
||||||
|
return attn_mask
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
""" Forward pass of Window Multi-head Self-attention module.
|
||||||
|
Args:
|
||||||
|
x: input tensor with shape of [b h w c];
|
||||||
|
attn_mask: attention mask, fill -inf where the value is True;
|
||||||
|
Returns:
|
||||||
|
output: tensor shape [b h w c]
|
||||||
|
"""
|
||||||
|
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
|
||||||
|
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
|
||||||
|
h_windows = x.size(1)
|
||||||
|
w_windows = x.size(2)
|
||||||
|
# square validation
|
||||||
|
# assert h_windows == w_windows
|
||||||
|
|
||||||
|
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
|
||||||
|
qkv = self.embedding_layer(x)
|
||||||
|
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
|
||||||
|
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
|
||||||
|
# Adding learnable relative embedding
|
||||||
|
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
|
||||||
|
# Using Attn Mask to distinguish different subwindows.
|
||||||
|
if self.type != 'W':
|
||||||
|
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
|
||||||
|
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
|
||||||
|
probs = nn.functional.softmax(sim, dim=-1)
|
||||||
|
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
|
||||||
|
output = rearrange(output, 'h b w p c -> b w p (h c)')
|
||||||
|
output = self.linear(output)
|
||||||
|
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
|
||||||
|
|
||||||
|
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
|
||||||
|
dims=(1, 2))
|
||||||
|
return output
|
||||||
|
|
||||||
|
def relative_embedding(self):
|
||||||
|
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
|
||||||
|
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
||||||
|
# negative is allowed
|
||||||
|
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
||||||
|
""" SwinTransformer Block
|
||||||
|
"""
|
||||||
|
super(Block, self).__init__()
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.output_dim = output_dim
|
||||||
|
assert type in ['W', 'SW']
|
||||||
|
self.type = type
|
||||||
|
if input_resolution <= window_size:
|
||||||
|
self.type = 'W'
|
||||||
|
|
||||||
|
self.ln1 = nn.LayerNorm(input_dim)
|
||||||
|
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
||||||
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||||
|
self.ln2 = nn.LayerNorm(input_dim)
|
||||||
|
self.mlp = nn.Sequential(
|
||||||
|
nn.Linear(input_dim, 4 * input_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(4 * input_dim, output_dim),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x + self.drop_path(self.msa(self.ln1(x)))
|
||||||
|
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ConvTransBlock(nn.Module):
|
||||||
|
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
||||||
|
""" SwinTransformer and Conv Block
|
||||||
|
"""
|
||||||
|
super(ConvTransBlock, self).__init__()
|
||||||
|
self.conv_dim = conv_dim
|
||||||
|
self.trans_dim = trans_dim
|
||||||
|
self.head_dim = head_dim
|
||||||
|
self.window_size = window_size
|
||||||
|
self.drop_path = drop_path
|
||||||
|
self.type = type
|
||||||
|
self.input_resolution = input_resolution
|
||||||
|
|
||||||
|
assert self.type in ['W', 'SW']
|
||||||
|
if self.input_resolution <= self.window_size:
|
||||||
|
self.type = 'W'
|
||||||
|
|
||||||
|
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
|
||||||
|
self.type, self.input_resolution)
|
||||||
|
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
||||||
|
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
||||||
|
|
||||||
|
self.conv_block = nn.Sequential(
|
||||||
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
||||||
|
nn.ReLU(True),
|
||||||
|
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
|
||||||
|
conv_x = self.conv_block(conv_x) + conv_x
|
||||||
|
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
|
||||||
|
trans_x = self.trans_block(trans_x)
|
||||||
|
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
|
||||||
|
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
||||||
|
x = x + res
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SCUNet(nn.Module):
|
||||||
|
# def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
|
||||||
|
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
|
||||||
|
super(SCUNet, self).__init__()
|
||||||
|
if config is None:
|
||||||
|
config = [2, 2, 2, 2, 2, 2, 2]
|
||||||
|
self.config = config
|
||||||
|
self.dim = dim
|
||||||
|
self.head_dim = 32
|
||||||
|
self.window_size = 8
|
||||||
|
|
||||||
|
# drop path rate for each layer
|
||||||
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
||||||
|
|
||||||
|
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
||||||
|
|
||||||
|
begin = 0
|
||||||
|
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution)
|
||||||
|
for i in range(config[0])] + \
|
||||||
|
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
||||||
|
|
||||||
|
begin += config[0]
|
||||||
|
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution // 2)
|
||||||
|
for i in range(config[1])] + \
|
||||||
|
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
||||||
|
|
||||||
|
begin += config[1]
|
||||||
|
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution // 4)
|
||||||
|
for i in range(config[2])] + \
|
||||||
|
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
||||||
|
|
||||||
|
begin += config[2]
|
||||||
|
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution // 8)
|
||||||
|
for i in range(config[3])]
|
||||||
|
|
||||||
|
begin += config[3]
|
||||||
|
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
|
||||||
|
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution // 4)
|
||||||
|
for i in range(config[4])]
|
||||||
|
|
||||||
|
begin += config[4]
|
||||||
|
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
|
||||||
|
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution // 2)
|
||||||
|
for i in range(config[5])]
|
||||||
|
|
||||||
|
begin += config[5]
|
||||||
|
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
|
||||||
|
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
||||||
|
'W' if not i % 2 else 'SW', input_resolution)
|
||||||
|
for i in range(config[6])]
|
||||||
|
|
||||||
|
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
||||||
|
|
||||||
|
self.m_head = nn.Sequential(*self.m_head)
|
||||||
|
self.m_down1 = nn.Sequential(*self.m_down1)
|
||||||
|
self.m_down2 = nn.Sequential(*self.m_down2)
|
||||||
|
self.m_down3 = nn.Sequential(*self.m_down3)
|
||||||
|
self.m_body = nn.Sequential(*self.m_body)
|
||||||
|
self.m_up3 = nn.Sequential(*self.m_up3)
|
||||||
|
self.m_up2 = nn.Sequential(*self.m_up2)
|
||||||
|
self.m_up1 = nn.Sequential(*self.m_up1)
|
||||||
|
self.m_tail = nn.Sequential(*self.m_tail)
|
||||||
|
# self.apply(self._init_weights)
|
||||||
|
|
||||||
|
def forward(self, x0):
|
||||||
|
|
||||||
|
h, w = x0.size()[-2:]
|
||||||
|
paddingBottom = int(np.ceil(h / 64) * 64 - h)
|
||||||
|
paddingRight = int(np.ceil(w / 64) * 64 - w)
|
||||||
|
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
|
||||||
|
|
||||||
|
x1 = self.m_head(x0)
|
||||||
|
x2 = self.m_down1(x1)
|
||||||
|
x3 = self.m_down2(x2)
|
||||||
|
x4 = self.m_down3(x3)
|
||||||
|
x = self.m_body(x4)
|
||||||
|
x = self.m_up3(x + x4)
|
||||||
|
x = self.m_up2(x + x3)
|
||||||
|
x = self.m_up1(x + x2)
|
||||||
|
x = self.m_tail(x + x1)
|
||||||
|
|
||||||
|
x = x[..., :h, :w]
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _init_weights(self, m):
|
||||||
|
if isinstance(m, nn.Linear):
|
||||||
|
trunc_normal_(m.weight, std=.02)
|
||||||
|
if m.bias is not None:
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
elif isinstance(m, nn.LayerNorm):
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
nn.init.constant_(m.weight, 1.0)
|
6
extensions-builtin/SwinIR/preload.py
Normal file
6
extensions-builtin/SwinIR/preload.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import os
|
||||||
|
from modules import paths
|
||||||
|
|
||||||
|
|
||||||
|
def preload(parser):
|
||||||
|
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
|
@ -5,16 +5,16 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
from modules import modelloader
|
from modules import modelloader, devices, script_callbacks, shared
|
||||||
from modules.paths import models_path
|
from modules.shared import cmd_opts, opts
|
||||||
from modules.shared import cmd_opts, opts, device
|
from swinir_model_arch import SwinIR as net
|
||||||
from modules.swinir_model_arch import SwinIR as net
|
from swinir_model_arch_v2 import Swin2SR as net2
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
|
|
||||||
precision_scope = (
|
|
||||||
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
device_swinir = devices.get_device_for('swinir')
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerSwinIR(Upscaler):
|
class UpscalerSwinIR(Upscaler):
|
||||||
@ -24,7 +24,6 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
||||||
"-L_x4_GAN.pth "
|
"-L_x4_GAN.pth "
|
||||||
self.model_name = "SwinIR 4x"
|
self.model_name = "SwinIR 4x"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
super().__init__()
|
super().__init__()
|
||||||
scalers = []
|
scalers = []
|
||||||
@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
model = self.load_model(model_file)
|
model = self.load_model(model_file)
|
||||||
if model is None:
|
if model is None:
|
||||||
return img
|
return img
|
||||||
model = model.to(device)
|
model = model.to(device_swinir, dtype=devices.dtype)
|
||||||
img = upscale(img, model)
|
img = upscale(img, model)
|
||||||
try:
|
try:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
@ -58,41 +57,63 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
filename = path
|
filename = path
|
||||||
if filename is None or not os.path.exists(filename):
|
if filename is None or not os.path.exists(filename):
|
||||||
return None
|
return None
|
||||||
model = net(
|
if filename.endswith(".v2.pth"):
|
||||||
|
model = net2(
|
||||||
upscale=scale,
|
upscale=scale,
|
||||||
in_chans=3,
|
in_chans=3,
|
||||||
img_size=64,
|
img_size=64,
|
||||||
window_size=8,
|
window_size=8,
|
||||||
img_range=1.0,
|
img_range=1.0,
|
||||||
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
depths=[6, 6, 6, 6, 6, 6],
|
||||||
embed_dim=240,
|
embed_dim=180,
|
||||||
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
num_heads=[6, 6, 6, 6, 6, 6],
|
||||||
mlp_ratio=2,
|
mlp_ratio=2,
|
||||||
upsampler="nearest+conv",
|
upsampler="nearest+conv",
|
||||||
resi_connection="3conv",
|
resi_connection="1conv",
|
||||||
)
|
)
|
||||||
|
params = None
|
||||||
|
else:
|
||||||
|
model = net(
|
||||||
|
upscale=scale,
|
||||||
|
in_chans=3,
|
||||||
|
img_size=64,
|
||||||
|
window_size=8,
|
||||||
|
img_range=1.0,
|
||||||
|
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
||||||
|
embed_dim=240,
|
||||||
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
||||||
|
mlp_ratio=2,
|
||||||
|
upsampler="nearest+conv",
|
||||||
|
resi_connection="3conv",
|
||||||
|
)
|
||||||
|
params = "params_ema"
|
||||||
|
|
||||||
pretrained_model = torch.load(filename)
|
pretrained_model = torch.load(filename)
|
||||||
model.load_state_dict(pretrained_model["params_ema"], strict=True)
|
if params is not None:
|
||||||
if not cmd_opts.no_half:
|
model.load_state_dict(pretrained_model[params], strict=True)
|
||||||
model = model.half()
|
else:
|
||||||
|
model.load_state_dict(pretrained_model, strict=True)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def upscale(
|
def upscale(
|
||||||
img,
|
img,
|
||||||
model,
|
model,
|
||||||
tile=opts.SWIN_tile,
|
tile=None,
|
||||||
tile_overlap=opts.SWIN_tile_overlap,
|
tile_overlap=None,
|
||||||
window_size=8,
|
window_size=8,
|
||||||
scale=4,
|
scale=4,
|
||||||
):
|
):
|
||||||
|
tile = tile or opts.SWIN_tile
|
||||||
|
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
|
||||||
|
|
||||||
|
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(device)
|
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), devices.autocast():
|
||||||
_, _, h_old, w_old = img.size()
|
_, _, h_old, w_old = img.size()
|
||||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||||
@ -119,21 +140,33 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||||||
stride = tile - tile_overlap
|
stride = tile - tile_overlap
|
||||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
|
||||||
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
|
||||||
|
|
||||||
for h_idx in h_idx_list:
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||||
for w_idx in w_idx_list:
|
for h_idx in h_idx_list:
|
||||||
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
for w_idx in w_idx_list:
|
||||||
out_patch = model(in_patch)
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
||||||
out_patch_mask = torch.ones_like(out_patch)
|
out_patch = model(in_patch)
|
||||||
|
out_patch_mask = torch.ones_like(out_patch)
|
||||||
|
|
||||||
E[
|
E[
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||||
].add_(out_patch)
|
].add_(out_patch)
|
||||||
W[
|
W[
|
||||||
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
||||||
].add_(out_patch_mask)
|
].add_(out_patch_mask)
|
||||||
|
pbar.update(1)
|
||||||
output = E.div_(W)
|
output = E.div_(W)
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings():
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
||||||
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_ui_settings(on_ui_settings)
|
@ -166,7 +166,7 @@ class SwinTransformerBlock(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
dim (int): Number of input channels.
|
dim (int): Number of input channels.
|
||||||
input_resolution (tuple[int]): Input resulotion.
|
input_resolution (tuple[int]): Input resolution.
|
||||||
num_heads (int): Number of attention heads.
|
num_heads (int): Number of attention heads.
|
||||||
window_size (int): Window size.
|
window_size (int): Window size.
|
||||||
shift_size (int): Shift size for SW-MSA.
|
shift_size (int): Shift size for SW-MSA.
|
1017
extensions-builtin/SwinIR/swinir_model_arch_v2.py
Normal file
1017
extensions-builtin/SwinIR/swinir_model_arch_v2.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,107 @@
|
|||||||
|
// Stable Diffusion WebUI - Bracket checker
|
||||||
|
// Version 1.0
|
||||||
|
// By Hingashi no Florin/Bwin4L
|
||||||
|
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
||||||
|
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
|
||||||
|
|
||||||
|
function checkBrackets(evt) {
|
||||||
|
textArea = evt.target;
|
||||||
|
tabName = evt.target.parentElement.parentElement.id.split("_")[0];
|
||||||
|
counterElt = document.querySelector('gradio-app').shadowRoot.querySelector('#' + tabName + '_token_counter');
|
||||||
|
|
||||||
|
promptName = evt.target.parentElement.parentElement.id.includes('neg') ? ' negative' : '';
|
||||||
|
|
||||||
|
errorStringParen = '(' + tabName + promptName + ' prompt) - Different number of opening and closing parentheses detected.\n';
|
||||||
|
errorStringSquare = '[' + tabName + promptName + ' prompt] - Different number of opening and closing square brackets detected.\n';
|
||||||
|
errorStringCurly = '{' + tabName + promptName + ' prompt} - Different number of opening and closing curly brackets detected.\n';
|
||||||
|
|
||||||
|
openBracketRegExp = /\(/g;
|
||||||
|
closeBracketRegExp = /\)/g;
|
||||||
|
|
||||||
|
openSquareBracketRegExp = /\[/g;
|
||||||
|
closeSquareBracketRegExp = /\]/g;
|
||||||
|
|
||||||
|
openCurlyBracketRegExp = /\{/g;
|
||||||
|
closeCurlyBracketRegExp = /\}/g;
|
||||||
|
|
||||||
|
totalOpenBracketMatches = 0;
|
||||||
|
totalCloseBracketMatches = 0;
|
||||||
|
totalOpenSquareBracketMatches = 0;
|
||||||
|
totalCloseSquareBracketMatches = 0;
|
||||||
|
totalOpenCurlyBracketMatches = 0;
|
||||||
|
totalCloseCurlyBracketMatches = 0;
|
||||||
|
|
||||||
|
openBracketMatches = textArea.value.match(openBracketRegExp);
|
||||||
|
if(openBracketMatches) {
|
||||||
|
totalOpenBracketMatches = openBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeBracketMatches = textArea.value.match(closeBracketRegExp);
|
||||||
|
if(closeBracketMatches) {
|
||||||
|
totalCloseBracketMatches = closeBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
|
||||||
|
if(openSquareBracketMatches) {
|
||||||
|
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
|
||||||
|
if(closeSquareBracketMatches) {
|
||||||
|
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
|
||||||
|
if(openCurlyBracketMatches) {
|
||||||
|
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
|
||||||
|
if(closeCurlyBracketMatches) {
|
||||||
|
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenBracketMatches != totalCloseBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringParen)) {
|
||||||
|
counterElt.title += errorStringParen;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringParen, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringSquare)) {
|
||||||
|
counterElt.title += errorStringSquare;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringSquare, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
|
||||||
|
if(!counterElt.title.includes(errorStringCurly)) {
|
||||||
|
counterElt.title += errorStringCurly;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
counterElt.title = counterElt.title.replace(errorStringCurly, '');
|
||||||
|
}
|
||||||
|
|
||||||
|
if(counterElt.title != '') {
|
||||||
|
counterElt.style = 'color: #FF5555;';
|
||||||
|
} else {
|
||||||
|
counterElt.style = '';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
var shadowRootLoaded = setInterval(function() {
|
||||||
|
var shadowTextArea = document.querySelector('gradio-app').shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
|
||||||
|
if(shadowTextArea.length < 1) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
clearInterval(shadowRootLoaded);
|
||||||
|
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_neg_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_prompt').onkeyup = checkBrackets;
|
||||||
|
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_neg_prompt').onkeyup = checkBrackets;
|
||||||
|
}, 1000);
|
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
50
extensions-builtin/roll-artist/scripts/roll-artist.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import random
|
||||||
|
|
||||||
|
from modules import script_callbacks, shared
|
||||||
|
import gradio as gr
|
||||||
|
|
||||||
|
art_symbol = '\U0001f3a8' # 🎨
|
||||||
|
global_prompt = None
|
||||||
|
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
|
||||||
|
|
||||||
|
|
||||||
|
def roll_artist(prompt):
|
||||||
|
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
|
||||||
|
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
|
||||||
|
|
||||||
|
return prompt + ", " + artist.name if prompt != '' else artist.name
|
||||||
|
|
||||||
|
|
||||||
|
def add_roll_button(prompt):
|
||||||
|
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
|
||||||
|
|
||||||
|
roll.click(
|
||||||
|
fn=roll_artist,
|
||||||
|
_js="update_txt2img_tokens",
|
||||||
|
inputs=[
|
||||||
|
prompt,
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
prompt,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def after_component(component, **kwargs):
|
||||||
|
global global_prompt
|
||||||
|
|
||||||
|
elem_id = kwargs.get('elem_id', None)
|
||||||
|
if elem_id not in related_ids:
|
||||||
|
return
|
||||||
|
|
||||||
|
if elem_id == "txt2img_prompt":
|
||||||
|
global_prompt = component
|
||||||
|
elif elem_id == "txt2img_clear_prompt":
|
||||||
|
add_roll_button(global_prompt)
|
||||||
|
elif elem_id == "img2img_prompt":
|
||||||
|
global_prompt = component
|
||||||
|
elif elem_id == "img2img_clear_prompt":
|
||||||
|
add_roll_button(global_prompt)
|
||||||
|
|
||||||
|
|
||||||
|
script_callbacks.on_after_component(after_component)
|
0
extensions/put extensions here.txt
Normal file
0
extensions/put extensions here.txt
Normal file
9
html/footer.html
Normal file
9
html/footer.html
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
<div>
|
||||||
|
<a href="/docs">API</a>
|
||||||
|
•
|
||||||
|
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
|
||||||
|
•
|
||||||
|
<a href="https://gradio.app">Gradio</a>
|
||||||
|
•
|
||||||
|
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
|
||||||
|
</div>
|
392
html/licenses.html
Normal file
392
html/licenses.html
Normal file
@ -0,0 +1,392 @@
|
|||||||
|
<style>
|
||||||
|
#licenses h2 {font-size: 1.2em; font-weight: bold; margin-bottom: 0.2em;}
|
||||||
|
#licenses small {font-size: 0.95em; opacity: 0.85;}
|
||||||
|
#licenses pre { margin: 1em 0 2em 0;}
|
||||||
|
</style>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">CodeFormer</a></h2>
|
||||||
|
<small>Parts of CodeFormer code had to be copied to be compatible with GFPGAN.</small>
|
||||||
|
<pre>
|
||||||
|
S-Lab License 1.0
|
||||||
|
|
||||||
|
Copyright 2022 S-Lab
|
||||||
|
|
||||||
|
Redistribution and use for non-commercial purpose in source and
|
||||||
|
binary forms, with or without modification, are permitted provided
|
||||||
|
that the following conditions are met:
|
||||||
|
|
||||||
|
1. Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in
|
||||||
|
the documentation and/or other materials provided with the
|
||||||
|
distribution.
|
||||||
|
|
||||||
|
3. Neither the name of the copyright holder nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
|
||||||
|
In the event that redistribution and/or use for commercial purpose in
|
||||||
|
source or binary forms, with or without modification is required,
|
||||||
|
please contact the contributor(s) of the work.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/victorca25/iNNfer/blob/main/LICENSE">ESRGAN</a></h2>
|
||||||
|
<small>Code for architecture and reading models copied.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2021 victorca25
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE">Real-ESRGAN</a></h2>
|
||||||
|
<small>Some code is copied to support ESRGAN models.</small>
|
||||||
|
<pre>
|
||||||
|
BSD 3-Clause License
|
||||||
|
|
||||||
|
Copyright (c) 2021, Xintao Wang
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
1. Redistributions of source code must retain the above copyright notice, this
|
||||||
|
list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||||
|
this list of conditions and the following disclaimer in the documentation
|
||||||
|
and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
3. Neither the name of the copyright holder nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE">InvokeAI</a></h2>
|
||||||
|
<small>Some code for compatibility with OSX is taken from lstein's repository.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 InvokeAI Team
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/Hafiidz/latent-diffusion/blob/main/LICENSE">LDSR</a></h2>
|
||||||
|
<small>Code added by contirubtors, most likely copied from this repository.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/pharmapsychotic/clip-interrogator/blob/main/LICENSE">CLIP Interrogator</a></h2>
|
||||||
|
<small>Some small amounts of code borrowed and reworked.</small>
|
||||||
|
<pre>
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2022 pharmapsychotic
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<h2><a href="https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
|
||||||
|
<small>Code added by contirubtors, most likely copied from this repository.</small>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
Apache License
|
||||||
|
Version 2.0, January 2004
|
||||||
|
http://www.apache.org/licenses/
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||||
|
|
||||||
|
1. Definitions.
|
||||||
|
|
||||||
|
"License" shall mean the terms and conditions for use, reproduction,
|
||||||
|
and distribution as defined by Sections 1 through 9 of this document.
|
||||||
|
|
||||||
|
"Licensor" shall mean the copyright owner or entity authorized by
|
||||||
|
the copyright owner that is granting the License.
|
||||||
|
|
||||||
|
"Legal Entity" shall mean the union of the acting entity and all
|
||||||
|
other entities that control, are controlled by, or are under common
|
||||||
|
control with that entity. For the purposes of this definition,
|
||||||
|
"control" means (i) the power, direct or indirect, to cause the
|
||||||
|
direction or management of such entity, whether by contract or
|
||||||
|
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||||
|
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||||
|
|
||||||
|
"You" (or "Your") shall mean an individual or Legal Entity
|
||||||
|
exercising permissions granted by this License.
|
||||||
|
|
||||||
|
"Source" form shall mean the preferred form for making modifications,
|
||||||
|
including but not limited to software source code, documentation
|
||||||
|
source, and configuration files.
|
||||||
|
|
||||||
|
"Object" form shall mean any form resulting from mechanical
|
||||||
|
transformation or translation of a Source form, including but
|
||||||
|
not limited to compiled object code, generated documentation,
|
||||||
|
and conversions to other media types.
|
||||||
|
|
||||||
|
"Work" shall mean the work of authorship, whether in Source or
|
||||||
|
Object form, made available under the License, as indicated by a
|
||||||
|
copyright notice that is included in or attached to the work
|
||||||
|
(an example is provided in the Appendix below).
|
||||||
|
|
||||||
|
"Derivative Works" shall mean any work, whether in Source or Object
|
||||||
|
form, that is based on (or derived from) the Work and for which the
|
||||||
|
editorial revisions, annotations, elaborations, or other modifications
|
||||||
|
represent, as a whole, an original work of authorship. For the purposes
|
||||||
|
of this License, Derivative Works shall not include works that remain
|
||||||
|
separable from, or merely link (or bind by name) to the interfaces of,
|
||||||
|
the Work and Derivative Works thereof.
|
||||||
|
|
||||||
|
"Contribution" shall mean any work of authorship, including
|
||||||
|
the original version of the Work and any modifications or additions
|
||||||
|
to that Work or Derivative Works thereof, that is intentionally
|
||||||
|
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||||
|
or by an individual or Legal Entity authorized to submit on behalf of
|
||||||
|
the copyright owner. For the purposes of this definition, "submitted"
|
||||||
|
means any form of electronic, verbal, or written communication sent
|
||||||
|
to the Licensor or its representatives, including but not limited to
|
||||||
|
communication on electronic mailing lists, source code control systems,
|
||||||
|
and issue tracking systems that are managed by, or on behalf of, the
|
||||||
|
Licensor for the purpose of discussing and improving the Work, but
|
||||||
|
excluding communication that is conspicuously marked or otherwise
|
||||||
|
designated in writing by the copyright owner as "Not a Contribution."
|
||||||
|
|
||||||
|
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||||
|
on behalf of whom a Contribution has been received by Licensor and
|
||||||
|
subsequently incorporated within the Work.
|
||||||
|
|
||||||
|
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
copyright license to reproduce, prepare Derivative Works of,
|
||||||
|
publicly display, publicly perform, sublicense, and distribute the
|
||||||
|
Work and such Derivative Works in Source or Object form.
|
||||||
|
|
||||||
|
3. Grant of Patent License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
(except as stated in this section) patent license to make, have made,
|
||||||
|
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||||
|
where such license applies only to those patent claims licensable
|
||||||
|
by such Contributor that are necessarily infringed by their
|
||||||
|
Contribution(s) alone or by combination of their Contribution(s)
|
||||||
|
with the Work to which such Contribution(s) was submitted. If You
|
||||||
|
institute patent litigation against any entity (including a
|
||||||
|
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||||
|
or a Contribution incorporated within the Work constitutes direct
|
||||||
|
or contributory patent infringement, then any patent licenses
|
||||||
|
granted to You under this License for that Work shall terminate
|
||||||
|
as of the date such litigation is filed.
|
||||||
|
|
||||||
|
4. Redistribution. You may reproduce and distribute copies of the
|
||||||
|
Work or Derivative Works thereof in any medium, with or without
|
||||||
|
modifications, and in Source or Object form, provided that You
|
||||||
|
meet the following conditions:
|
||||||
|
|
||||||
|
(a) You must give any other recipients of the Work or
|
||||||
|
Derivative Works a copy of this License; and
|
||||||
|
|
||||||
|
(b) You must cause any modified files to carry prominent notices
|
||||||
|
stating that You changed the files; and
|
||||||
|
|
||||||
|
(c) You must retain, in the Source form of any Derivative Works
|
||||||
|
that You distribute, all copyright, patent, trademark, and
|
||||||
|
attribution notices from the Source form of the Work,
|
||||||
|
excluding those notices that do not pertain to any part of
|
||||||
|
the Derivative Works; and
|
||||||
|
|
||||||
|
(d) If the Work includes a "NOTICE" text file as part of its
|
||||||
|
distribution, then any Derivative Works that You distribute must
|
||||||
|
include a readable copy of the attribution notices contained
|
||||||
|
within such NOTICE file, excluding those notices that do not
|
||||||
|
pertain to any part of the Derivative Works, in at least one
|
||||||
|
of the following places: within a NOTICE text file distributed
|
||||||
|
as part of the Derivative Works; within the Source form or
|
||||||
|
documentation, if provided along with the Derivative Works; or,
|
||||||
|
within a display generated by the Derivative Works, if and
|
||||||
|
wherever such third-party notices normally appear. The contents
|
||||||
|
of the NOTICE file are for informational purposes only and
|
||||||
|
do not modify the License. You may add Your own attribution
|
||||||
|
notices within Derivative Works that You distribute, alongside
|
||||||
|
or as an addendum to the NOTICE text from the Work, provided
|
||||||
|
that such additional attribution notices cannot be construed
|
||||||
|
as modifying the License.
|
||||||
|
|
||||||
|
You may add Your own copyright statement to Your modifications and
|
||||||
|
may provide additional or different license terms and conditions
|
||||||
|
for use, reproduction, or distribution of Your modifications, or
|
||||||
|
for any such Derivative Works as a whole, provided Your use,
|
||||||
|
reproduction, and distribution of the Work otherwise complies with
|
||||||
|
the conditions stated in this License.
|
||||||
|
|
||||||
|
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||||
|
any Contribution intentionally submitted for inclusion in the Work
|
||||||
|
by You to the Licensor shall be under the terms and conditions of
|
||||||
|
this License, without any additional terms or conditions.
|
||||||
|
Notwithstanding the above, nothing herein shall supersede or modify
|
||||||
|
the terms of any separate license agreement you may have executed
|
||||||
|
with Licensor regarding such Contributions.
|
||||||
|
|
||||||
|
6. Trademarks. This License does not grant permission to use the trade
|
||||||
|
names, trademarks, service marks, or product names of the Licensor,
|
||||||
|
except as required for reasonable and customary use in describing the
|
||||||
|
origin of the Work and reproducing the content of the NOTICE file.
|
||||||
|
|
||||||
|
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||||
|
agreed to in writing, Licensor provides the Work (and each
|
||||||
|
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||||
|
implied, including, without limitation, any warranties or conditions
|
||||||
|
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||||
|
appropriateness of using or redistributing the Work and assume any
|
||||||
|
risks associated with Your exercise of permissions under this License.
|
||||||
|
|
||||||
|
8. Limitation of Liability. In no event and under no legal theory,
|
||||||
|
whether in tort (including negligence), contract, or otherwise,
|
||||||
|
unless required by applicable law (such as deliberate and grossly
|
||||||
|
negligent acts) or agreed to in writing, shall any Contributor be
|
||||||
|
liable to You for damages, including any direct, indirect, special,
|
||||||
|
incidental, or consequential damages of any character arising as a
|
||||||
|
result of this License or out of the use or inability to use the
|
||||||
|
Work (including but not limited to damages for loss of goodwill,
|
||||||
|
work stoppage, computer failure or malfunction, or any and all
|
||||||
|
other commercial damages or losses), even if such Contributor
|
||||||
|
has been advised of the possibility of such damages.
|
||||||
|
|
||||||
|
9. Accepting Warranty or Additional Liability. While redistributing
|
||||||
|
the Work or Derivative Works thereof, You may choose to offer,
|
||||||
|
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||||
|
or other liability obligations and/or rights consistent with this
|
||||||
|
License. However, in accepting such obligations, You may act only
|
||||||
|
on Your own behalf and on Your sole responsibility, not on behalf
|
||||||
|
of any other Contributor, and only if You agree to indemnify,
|
||||||
|
defend, and hold each Contributor harmless for any liability
|
||||||
|
incurred by, or claims asserted against, such Contributor by reason
|
||||||
|
of your accepting any such warranty or additional liability.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
APPENDIX: How to apply the Apache License to your work.
|
||||||
|
|
||||||
|
To apply the Apache License to your work, attach the following
|
||||||
|
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||||
|
replaced with your own identifying information. (Don't include
|
||||||
|
the brackets!) The text should be enclosed in the appropriate
|
||||||
|
comment syntax for the file format. We also recommend that a
|
||||||
|
file or class name and description of purpose be included on the
|
||||||
|
same "printed page" as the copyright notice for easier
|
||||||
|
identification within third-party archives.
|
||||||
|
|
||||||
|
Copyright [2021] [SwinIR Authors]
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
</pre>
|
||||||
|
|
@ -3,12 +3,12 @@ let currentWidth = null;
|
|||||||
let currentHeight = null;
|
let currentHeight = null;
|
||||||
let arFrameTimeout = setTimeout(function(){},0);
|
let arFrameTimeout = setTimeout(function(){},0);
|
||||||
|
|
||||||
function dimensionChange(e,dimname){
|
function dimensionChange(e, is_width, is_height){
|
||||||
|
|
||||||
if(dimname == 'Width'){
|
if(is_width){
|
||||||
currentWidth = e.target.value*1.0
|
currentWidth = e.target.value*1.0
|
||||||
}
|
}
|
||||||
if(dimname == 'Height'){
|
if(is_height){
|
||||||
currentHeight = e.target.value*1.0
|
currentHeight = e.target.value*1.0
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
|
|
||||||
if(img2imgMode){
|
|
||||||
img2imgMode=img2imgMode.innerText
|
|
||||||
}else{
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
|
|
||||||
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
|
|
||||||
|
|
||||||
var targetElement = null;
|
var targetElement = null;
|
||||||
|
|
||||||
if(img2imgMode=='img2img' && redrawImage){
|
var tabIndex = get_tab_index('mode_img2img')
|
||||||
targetElement = redrawImage;
|
if(tabIndex == 0){
|
||||||
}else if(img2imgMode=='Inpaint' && inpaintImage){
|
targetElement = gradioApp().querySelector('div[data-testid=image] img');
|
||||||
targetElement = inpaintImage;
|
} else if(tabIndex == 1){
|
||||||
|
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
|
||||||
}
|
}
|
||||||
|
|
||||||
if(targetElement){
|
if(targetElement){
|
||||||
@ -98,22 +89,20 @@ onUiUpdate(function(){
|
|||||||
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
|
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
|
||||||
if(inImg2img){
|
if(inImg2img){
|
||||||
let inputs = gradioApp().querySelectorAll('input');
|
let inputs = gradioApp().querySelectorAll('input');
|
||||||
inputs.forEach(function(e){
|
inputs.forEach(function(e){
|
||||||
let parentLabel = e.parentElement.querySelector('label')
|
var is_width = e.parentElement.id == "img2img_width"
|
||||||
if(parentLabel && parentLabel.innerText){
|
var is_height = e.parentElement.id == "img2img_height"
|
||||||
if(!e.classList.contains('scrollwatch')){
|
|
||||||
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){
|
if((is_width || is_height) && !e.classList.contains('scrollwatch')){
|
||||||
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} )
|
e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
|
||||||
e.classList.add('scrollwatch')
|
e.classList.add('scrollwatch')
|
||||||
}
|
}
|
||||||
if(parentLabel.innerText == 'Width'){
|
if(is_width){
|
||||||
currentWidth = e.value*1.0
|
currentWidth = e.value*1.0
|
||||||
}
|
}
|
||||||
if(parentLabel.innerText == 'Height'){
|
if(is_height){
|
||||||
currentHeight = e.value*1.0
|
currentHeight = e.value*1.0
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
177
javascript/contextMenus.js
Normal file
177
javascript/contextMenus.js
Normal file
@ -0,0 +1,177 @@
|
|||||||
|
|
||||||
|
contextMenuInit = function(){
|
||||||
|
let eventListenerApplied=false;
|
||||||
|
let menuSpecs = new Map();
|
||||||
|
|
||||||
|
const uid = function(){
|
||||||
|
return Date.now().toString(36) + Math.random().toString(36).substr(2);
|
||||||
|
}
|
||||||
|
|
||||||
|
function showContextMenu(event,element,menuEntries){
|
||||||
|
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
|
||||||
|
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
||||||
|
|
||||||
|
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||||
|
if(oldMenu){
|
||||||
|
oldMenu.remove()
|
||||||
|
}
|
||||||
|
|
||||||
|
let tabButton = uiCurrentTab
|
||||||
|
let baseStyle = window.getComputedStyle(tabButton)
|
||||||
|
|
||||||
|
const contextMenu = document.createElement('nav')
|
||||||
|
contextMenu.id = "context-menu"
|
||||||
|
contextMenu.style.background = baseStyle.background
|
||||||
|
contextMenu.style.color = baseStyle.color
|
||||||
|
contextMenu.style.fontFamily = baseStyle.fontFamily
|
||||||
|
contextMenu.style.top = posy+'px'
|
||||||
|
contextMenu.style.left = posx+'px'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
const contextMenuList = document.createElement('ul')
|
||||||
|
contextMenuList.className = 'context-menu-items';
|
||||||
|
contextMenu.append(contextMenuList);
|
||||||
|
|
||||||
|
menuEntries.forEach(function(entry){
|
||||||
|
let contextMenuEntry = document.createElement('a')
|
||||||
|
contextMenuEntry.innerHTML = entry['name']
|
||||||
|
contextMenuEntry.addEventListener("click", function(e) {
|
||||||
|
entry['func']();
|
||||||
|
})
|
||||||
|
contextMenuList.append(contextMenuEntry);
|
||||||
|
|
||||||
|
})
|
||||||
|
|
||||||
|
gradioApp().getRootNode().appendChild(contextMenu)
|
||||||
|
|
||||||
|
let menuWidth = contextMenu.offsetWidth + 4;
|
||||||
|
let menuHeight = contextMenu.offsetHeight + 4;
|
||||||
|
|
||||||
|
let windowWidth = window.innerWidth;
|
||||||
|
let windowHeight = window.innerHeight;
|
||||||
|
|
||||||
|
if ( (windowWidth - posx) < menuWidth ) {
|
||||||
|
contextMenu.style.left = windowWidth - menuWidth + "px";
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( (windowHeight - posy) < menuHeight ) {
|
||||||
|
contextMenu.style.top = windowHeight - menuHeight + "px";
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
|
||||||
|
|
||||||
|
currentItems = menuSpecs.get(targetElementSelector)
|
||||||
|
|
||||||
|
if(!currentItems){
|
||||||
|
currentItems = []
|
||||||
|
menuSpecs.set(targetElementSelector,currentItems);
|
||||||
|
}
|
||||||
|
let newItem = {'id':targetElementSelector+'_'+uid(),
|
||||||
|
'name':entryName,
|
||||||
|
'func':entryFunction,
|
||||||
|
'isNew':true}
|
||||||
|
|
||||||
|
currentItems.push(newItem)
|
||||||
|
return newItem['id']
|
||||||
|
}
|
||||||
|
|
||||||
|
function removeContextMenuOption(uid){
|
||||||
|
menuSpecs.forEach(function(v,k) {
|
||||||
|
let index = -1
|
||||||
|
v.forEach(function(e,ei){if(e['id']==uid){index=ei}})
|
||||||
|
if(index>=0){
|
||||||
|
v.splice(index, 1);
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
function addContextMenuEventListener(){
|
||||||
|
if(eventListenerApplied){
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
gradioApp().addEventListener("click", function(e) {
|
||||||
|
let source = e.composedPath()[0]
|
||||||
|
if(source.id && source.id.indexOf('check_progress')>-1){
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||||
|
if(oldMenu){
|
||||||
|
oldMenu.remove()
|
||||||
|
}
|
||||||
|
});
|
||||||
|
gradioApp().addEventListener("contextmenu", function(e) {
|
||||||
|
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||||
|
if(oldMenu){
|
||||||
|
oldMenu.remove()
|
||||||
|
}
|
||||||
|
menuSpecs.forEach(function(v,k) {
|
||||||
|
if(e.composedPath()[0].matches(k)){
|
||||||
|
showContextMenu(e,e.composedPath()[0],v)
|
||||||
|
e.preventDefault()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
})
|
||||||
|
});
|
||||||
|
eventListenerApplied=true
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
||||||
|
}
|
||||||
|
|
||||||
|
initResponse = contextMenuInit();
|
||||||
|
appendContextMenuOption = initResponse[0];
|
||||||
|
removeContextMenuOption = initResponse[1];
|
||||||
|
addContextMenuEventListener = initResponse[2];
|
||||||
|
|
||||||
|
(function(){
|
||||||
|
//Start example Context Menu Items
|
||||||
|
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
|
||||||
|
let genbutton = gradioApp().querySelector(genbuttonid);
|
||||||
|
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
|
||||||
|
if(!interruptbutton.offsetParent){
|
||||||
|
genbutton.click();
|
||||||
|
}
|
||||||
|
clearInterval(window.generateOnRepeatInterval)
|
||||||
|
window.generateOnRepeatInterval = setInterval(function(){
|
||||||
|
if(!interruptbutton.offsetParent){
|
||||||
|
genbutton.click();
|
||||||
|
}
|
||||||
|
},
|
||||||
|
500)
|
||||||
|
}
|
||||||
|
|
||||||
|
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
|
||||||
|
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
|
||||||
|
})
|
||||||
|
appendContextMenuOption('#img2img_generate','Generate forever',function(){
|
||||||
|
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
||||||
|
})
|
||||||
|
|
||||||
|
let cancelGenerateForever = function(){
|
||||||
|
clearInterval(window.generateOnRepeatInterval)
|
||||||
|
}
|
||||||
|
|
||||||
|
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||||
|
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||||
|
|
||||||
|
appendContextMenuOption('#roll','Roll three',
|
||||||
|
function(){
|
||||||
|
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
||||||
|
setTimeout(function(){rollbutton.click()},100)
|
||||||
|
setTimeout(function(){rollbutton.click()},200)
|
||||||
|
setTimeout(function(){rollbutton.click()},300)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
})();
|
||||||
|
//End example Context Menu Items
|
||||||
|
|
||||||
|
onUiUpdate(function(){
|
||||||
|
addContextMenuEventListener()
|
||||||
|
});
|
15
javascript/dragdrop.js
vendored
15
javascript/dragdrop.js
vendored
@ -9,11 +9,19 @@ function dropReplaceImage( imgWrap, files ) {
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const tmpFile = files[0];
|
||||||
|
|
||||||
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
|
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
|
||||||
const callback = () => {
|
const callback = () => {
|
||||||
const fileInput = imgWrap.querySelector('input[type="file"]');
|
const fileInput = imgWrap.querySelector('input[type="file"]');
|
||||||
if ( fileInput ) {
|
if ( fileInput ) {
|
||||||
fileInput.files = files;
|
if ( files.length === 0 ) {
|
||||||
|
files = new DataTransfer();
|
||||||
|
files.items.add(tmpFile);
|
||||||
|
fileInput.files = files.files;
|
||||||
|
} else {
|
||||||
|
fileInput.files = files;
|
||||||
|
}
|
||||||
fileInput.dispatchEvent(new Event('change'));
|
fileInput.dispatchEvent(new Event('change'));
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -43,7 +51,7 @@ function dropReplaceImage( imgWrap, files ) {
|
|||||||
window.document.addEventListener('dragover', e => {
|
window.document.addEventListener('dragover', e => {
|
||||||
const target = e.composedPath()[0];
|
const target = e.composedPath()[0];
|
||||||
const imgWrap = target.closest('[data-testid="image"]');
|
const imgWrap = target.closest('[data-testid="image"]');
|
||||||
if ( !imgWrap ) {
|
if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
e.stopPropagation();
|
e.stopPropagation();
|
||||||
@ -53,6 +61,9 @@ window.document.addEventListener('dragover', e => {
|
|||||||
|
|
||||||
window.document.addEventListener('drop', e => {
|
window.document.addEventListener('drop', e => {
|
||||||
const target = e.composedPath()[0];
|
const target = e.composedPath()[0];
|
||||||
|
if (target.placeholder.indexOf("Prompt") == -1) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
const imgWrap = target.closest('[data-testid="image"]');
|
const imgWrap = target.closest('[data-testid="image"]');
|
||||||
if ( !imgWrap ) {
|
if ( !imgWrap ) {
|
||||||
return;
|
return;
|
||||||
|
75
javascript/edit-attention.js
Normal file
75
javascript/edit-attention.js
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
addEventListener('keydown', (event) => {
|
||||||
|
let target = event.originalTarget || event.composedPath()[0];
|
||||||
|
if (!target.matches("#toprow textarea.gr-text-input[placeholder]")) return;
|
||||||
|
if (! (event.metaKey || event.ctrlKey)) return;
|
||||||
|
|
||||||
|
|
||||||
|
let plus = "ArrowUp"
|
||||||
|
let minus = "ArrowDown"
|
||||||
|
if (event.key != plus && event.key != minus) return;
|
||||||
|
|
||||||
|
let selectionStart = target.selectionStart;
|
||||||
|
let selectionEnd = target.selectionEnd;
|
||||||
|
// If the user hasn't selected anything, let's select their current parenthesis block
|
||||||
|
if (selectionStart === selectionEnd) {
|
||||||
|
// Find opening parenthesis around current cursor
|
||||||
|
const before = target.value.substring(0, selectionStart);
|
||||||
|
let beforeParen = before.lastIndexOf("(");
|
||||||
|
if (beforeParen == -1) return;
|
||||||
|
let beforeParenClose = before.lastIndexOf(")");
|
||||||
|
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
|
||||||
|
beforeParen = before.lastIndexOf("(", beforeParen - 1);
|
||||||
|
beforeParenClose = before.lastIndexOf(")", beforeParenClose - 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find closing parenthesis around current cursor
|
||||||
|
const after = target.value.substring(selectionStart);
|
||||||
|
let afterParen = after.indexOf(")");
|
||||||
|
if (afterParen == -1) return;
|
||||||
|
let afterParenOpen = after.indexOf("(");
|
||||||
|
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
|
||||||
|
afterParen = after.indexOf(")", afterParen + 1);
|
||||||
|
afterParenOpen = after.indexOf("(", afterParenOpen + 1);
|
||||||
|
}
|
||||||
|
if (beforeParen === -1 || afterParen === -1) return;
|
||||||
|
|
||||||
|
// Set the selection to the text between the parenthesis
|
||||||
|
const parenContent = target.value.substring(beforeParen + 1, selectionStart + afterParen);
|
||||||
|
const lastColon = parenContent.lastIndexOf(":");
|
||||||
|
selectionStart = beforeParen + 1;
|
||||||
|
selectionEnd = selectionStart + lastColon;
|
||||||
|
target.setSelectionRange(selectionStart, selectionEnd);
|
||||||
|
}
|
||||||
|
|
||||||
|
event.preventDefault();
|
||||||
|
|
||||||
|
if (selectionStart == 0 || target.value[selectionStart - 1] != "(") {
|
||||||
|
target.value = target.value.slice(0, selectionStart) +
|
||||||
|
"(" + target.value.slice(selectionStart, selectionEnd) + ":1.0)" +
|
||||||
|
target.value.slice(selectionEnd);
|
||||||
|
|
||||||
|
target.focus();
|
||||||
|
target.selectionStart = selectionStart + 1;
|
||||||
|
target.selectionEnd = selectionEnd + 1;
|
||||||
|
|
||||||
|
} else {
|
||||||
|
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
|
||||||
|
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
|
||||||
|
if (isNaN(weight)) return;
|
||||||
|
if (event.key == minus) weight -= 0.1;
|
||||||
|
if (event.key == plus) weight += 0.1;
|
||||||
|
|
||||||
|
weight = parseFloat(weight.toPrecision(12));
|
||||||
|
|
||||||
|
target.value = target.value.slice(0, selectionEnd + 1) +
|
||||||
|
weight +
|
||||||
|
target.value.slice(selectionEnd + 1 + end - 1);
|
||||||
|
|
||||||
|
target.focus();
|
||||||
|
target.selectionStart = selectionStart;
|
||||||
|
target.selectionEnd = selectionEnd;
|
||||||
|
}
|
||||||
|
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
|
||||||
|
// internal Svelte data binding remains in sync.
|
||||||
|
target.dispatchEvent(new Event("input", { bubbles: true }));
|
||||||
|
});
|
35
javascript/extensions.js
Normal file
35
javascript/extensions.js
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
|
||||||
|
function extensions_apply(_, _){
|
||||||
|
disable = []
|
||||||
|
update = []
|
||||||
|
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
|
||||||
|
if(x.name.startsWith("enable_") && ! x.checked)
|
||||||
|
disable.push(x.name.substr(7))
|
||||||
|
|
||||||
|
if(x.name.startsWith("update_") && x.checked)
|
||||||
|
update.push(x.name.substr(7))
|
||||||
|
})
|
||||||
|
|
||||||
|
restart_reload()
|
||||||
|
|
||||||
|
return [JSON.stringify(disable), JSON.stringify(update)]
|
||||||
|
}
|
||||||
|
|
||||||
|
function extensions_check(){
|
||||||
|
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
|
||||||
|
x.innerHTML = "Loading..."
|
||||||
|
})
|
||||||
|
|
||||||
|
return []
|
||||||
|
}
|
||||||
|
|
||||||
|
function install_extension_from_index(button, url){
|
||||||
|
button.disabled = "disabled"
|
||||||
|
button.value = "Installing..."
|
||||||
|
|
||||||
|
textarea = gradioApp().querySelector('#extension_to_install textarea')
|
||||||
|
textarea.value = url
|
||||||
|
textarea.dispatchEvent(new Event("input", { bubbles: true }))
|
||||||
|
|
||||||
|
gradioApp().querySelector('#install_extension_button').click()
|
||||||
|
}
|
33
javascript/generationParams.js
Normal file
33
javascript/generationParams.js
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
|
||||||
|
|
||||||
|
let txt2img_gallery, img2img_gallery, modal = undefined;
|
||||||
|
onUiUpdate(function(){
|
||||||
|
if (!txt2img_gallery) {
|
||||||
|
txt2img_gallery = attachGalleryListeners("txt2img")
|
||||||
|
}
|
||||||
|
if (!img2img_gallery) {
|
||||||
|
img2img_gallery = attachGalleryListeners("img2img")
|
||||||
|
}
|
||||||
|
if (!modal) {
|
||||||
|
modal = gradioApp().getElementById('lightboxModal')
|
||||||
|
modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
let modalObserver = new MutationObserver(function(mutations) {
|
||||||
|
mutations.forEach(function(mutationRecord) {
|
||||||
|
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
|
||||||
|
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
|
||||||
|
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
function attachGalleryListeners(tab_name) {
|
||||||
|
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
|
||||||
|
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
|
||||||
|
gallery?.addEventListener('keydown', (e) => {
|
||||||
|
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
|
||||||
|
gradioApp().getElementById(tab_name+"_generation_info_button").click()
|
||||||
|
});
|
||||||
|
return gallery;
|
||||||
|
}
|
@ -6,6 +6,7 @@ titles = {
|
|||||||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
||||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||||
|
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||||
|
|
||||||
"Batch count": "How many batches of images to create",
|
"Batch count": "How many batches of images to create",
|
||||||
"Batch size": "How many image to create in a single batch",
|
"Batch size": "How many image to create in a single batch",
|
||||||
@ -14,8 +15,11 @@ titles = {
|
|||||||
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
|
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
|
||||||
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed",
|
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed",
|
||||||
"\u{1f3a8}": "Add a random artist to the prompt.",
|
"\u{1f3a8}": "Add a random artist to the prompt.",
|
||||||
"\u2199\ufe0f": "Read generation parameters from prompt into user interface.",
|
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
|
||||||
"\uD83D\uDCC2": "Open images output directory",
|
"\u{1f4c2}": "Open images output directory",
|
||||||
|
"\u{1f4be}": "Save style",
|
||||||
|
"\U0001F5D1": "Clear prompt",
|
||||||
|
"\u{1f4cb}": "Apply selected styles to current prompt",
|
||||||
|
|
||||||
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
||||||
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
|
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
|
||||||
@ -35,6 +39,7 @@ titles = {
|
|||||||
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
|
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
|
||||||
"Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
|
"Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
|
||||||
|
|
||||||
|
"Skip": "Stop processing current image and continue processing.",
|
||||||
"Interrupt": "Stop processing images and return any results accumulated so far.",
|
"Interrupt": "Stop processing images and return any results accumulated so far.",
|
||||||
"Save": "Write image to a directory (default - log/images) and generation parameters into csv file.",
|
"Save": "Write image to a directory (default - log/images) and generation parameters into csv file.",
|
||||||
|
|
||||||
@ -47,6 +52,7 @@ titles = {
|
|||||||
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
|
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
|
||||||
|
|
||||||
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",
|
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",
|
||||||
|
"Prompt order": "Separate a list of words with commas, and the script will make a variation of prompt with those words for their every possible order",
|
||||||
|
|
||||||
"Tiling": "Produce an image that can be tiled.",
|
"Tiling": "Produce an image that can be tiled.",
|
||||||
"Tile overlap": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.",
|
"Tile overlap": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.",
|
||||||
@ -58,8 +64,8 @@ titles = {
|
|||||||
|
|
||||||
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
|
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
|
||||||
|
|
||||||
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
|
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||||
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.",
|
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||||
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
|
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
|
||||||
|
|
||||||
"Loopback": "Process an image, use it as an input, repeat.",
|
"Loopback": "Process an image, use it as an input, repeat.",
|
||||||
@ -71,12 +77,30 @@ titles = {
|
|||||||
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
|
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
|
||||||
|
|
||||||
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
||||||
|
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
|
||||||
|
|
||||||
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
|
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
|
||||||
|
|
||||||
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
||||||
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
|
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
|
||||||
|
|
||||||
|
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
|
||||||
|
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
|
||||||
|
|
||||||
|
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
|
||||||
|
"Filename join string": "This string will be used to join split words into a single line if the option above is enabled.",
|
||||||
|
|
||||||
|
"Quicksettings list": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.",
|
||||||
|
|
||||||
|
"Weighted sum": "Result = A * (1 - M) + B * M",
|
||||||
|
"Add difference": "Result = A + (B - C) * M",
|
||||||
|
|
||||||
|
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||||
|
|
||||||
|
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
||||||
|
|
||||||
|
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
|
||||||
|
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality."
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -31,8 +31,8 @@ function imageMaskResize() {
|
|||||||
|
|
||||||
wrapper.style.width = `${wW}px`;
|
wrapper.style.width = `${wW}px`;
|
||||||
wrapper.style.height = `${wH}px`;
|
wrapper.style.height = `${wH}px`;
|
||||||
wrapper.style.left = `${(w-wW)/2}px`;
|
wrapper.style.left = `0px`;
|
||||||
wrapper.style.top = `${(h-wH)/2}px`;
|
wrapper.style.top = `0px`;
|
||||||
|
|
||||||
canvases.forEach( c => {
|
canvases.forEach( c => {
|
||||||
c.style.width = c.style.height = '';
|
c.style.width = c.style.height = '';
|
||||||
@ -42,4 +42,4 @@ function imageMaskResize() {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
onUiUpdate(() => imageMaskResize());
|
onUiUpdate(() => imageMaskResize());
|
||||||
|
19
javascript/imageParams.js
Normal file
19
javascript/imageParams.js
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
window.onload = (function(){
|
||||||
|
window.addEventListener('drop', e => {
|
||||||
|
const target = e.composedPath()[0];
|
||||||
|
const idx = selected_gallery_index();
|
||||||
|
if (target.placeholder.indexOf("Prompt") == -1) return;
|
||||||
|
|
||||||
|
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
|
||||||
|
|
||||||
|
e.stopPropagation();
|
||||||
|
e.preventDefault();
|
||||||
|
const imgParent = gradioApp().getElementById(prompt_target);
|
||||||
|
const files = e.dataTransfer.files;
|
||||||
|
const fileInput = imgParent.querySelector('input[type="file"]');
|
||||||
|
if ( fileInput ) {
|
||||||
|
fileInput.files = files;
|
||||||
|
fileInput.dispatchEvent(new Event('change'));
|
||||||
|
}
|
||||||
|
});
|
||||||
|
});
|
@ -1,73 +1,129 @@
|
|||||||
// A full size 'lightbox' preview modal shown when left clicking on gallery previews
|
// A full size 'lightbox' preview modal shown when left clicking on gallery previews
|
||||||
|
|
||||||
function closeModal() {
|
function closeModal() {
|
||||||
gradioApp().getElementById("lightboxModal").style.display = "none";
|
gradioApp().getElementById("lightboxModal").style.display = "none";
|
||||||
}
|
}
|
||||||
|
|
||||||
function showModal(event) {
|
function showModal(event) {
|
||||||
const source = event.target || event.srcElement;
|
const source = event.target || event.srcElement;
|
||||||
const modalImage = gradioApp().getElementById("modalImage")
|
const modalImage = gradioApp().getElementById("modalImage")
|
||||||
const lb = gradioApp().getElementById("lightboxModal")
|
const lb = gradioApp().getElementById("lightboxModal")
|
||||||
modalImage.src = source.src
|
modalImage.src = source.src
|
||||||
if (modalImage.style.display === 'none') {
|
if (modalImage.style.display === 'none') {
|
||||||
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
||||||
}
|
}
|
||||||
lb.style.display = "block";
|
lb.style.display = "block";
|
||||||
lb.focus()
|
lb.focus()
|
||||||
event.stopPropagation()
|
|
||||||
|
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
|
||||||
|
const tabImg2Img = gradioApp().getElementById("tab_img2img")
|
||||||
|
// show the save button in modal only on txt2img or img2img tabs
|
||||||
|
if (tabTxt2Img.style.display != "none" || tabImg2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById("modal_save").style.display = "inline"
|
||||||
|
} else {
|
||||||
|
gradioApp().getElementById("modal_save").style.display = "none"
|
||||||
|
}
|
||||||
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function negmod(n, m) {
|
function negmod(n, m) {
|
||||||
return ((n % m) + m) % m;
|
return ((n % m) + m) % m;
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalImageSwitch(offset){
|
function updateOnBackgroundChange() {
|
||||||
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
const modalImage = gradioApp().getElementById("modalImage")
|
||||||
var galleryButtons = []
|
if (modalImage && modalImage.offsetParent) {
|
||||||
allgalleryButtons.forEach(function(elem){
|
let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||||
if(elem.parentElement.offsetParent){
|
let currentButton = null
|
||||||
galleryButtons.push(elem);
|
allcurrentButtons.forEach(function(elem) {
|
||||||
|
if (elem.parentElement.offsetParent) {
|
||||||
|
currentButton = elem;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
|
||||||
|
modalImage.src = currentButton.children[0].src;
|
||||||
|
if (modalImage.style.display === 'none') {
|
||||||
|
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
})
|
}
|
||||||
|
|
||||||
if(galleryButtons.length>1){
|
function modalImageSwitch(offset) {
|
||||||
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
||||||
var currentButton = null
|
var galleryButtons = []
|
||||||
allcurrentButtons.forEach(function(elem){
|
allgalleryButtons.forEach(function(elem) {
|
||||||
if(elem.parentElement.offsetParent){
|
if (elem.parentElement.offsetParent) {
|
||||||
currentButton = elem;
|
galleryButtons.push(elem);
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
var result = -1
|
if (galleryButtons.length > 1) {
|
||||||
galleryButtons.forEach(function(v, i){ if(v==currentButton) { result = i } })
|
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||||
|
var currentButton = null
|
||||||
|
allcurrentButtons.forEach(function(elem) {
|
||||||
|
if (elem.parentElement.offsetParent) {
|
||||||
|
currentButton = elem;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
if(result != -1){
|
var result = -1
|
||||||
nextButton = galleryButtons[negmod((result+offset),galleryButtons.length)]
|
galleryButtons.forEach(function(v, i) {
|
||||||
nextButton.click()
|
if (v == currentButton) {
|
||||||
const modalImage = gradioApp().getElementById("modalImage");
|
result = i
|
||||||
const modal = gradioApp().getElementById("lightboxModal");
|
}
|
||||||
modalImage.src = nextButton.children[0].src;
|
})
|
||||||
if (modalImage.style.display === 'none') {
|
|
||||||
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
if (result != -1) {
|
||||||
|
nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
|
||||||
|
nextButton.click()
|
||||||
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
|
const modal = gradioApp().getElementById("lightboxModal");
|
||||||
|
modalImage.src = nextButton.children[0].src;
|
||||||
|
if (modalImage.style.display === 'none') {
|
||||||
|
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||||
|
}
|
||||||
|
setTimeout(function() {
|
||||||
|
modal.focus()
|
||||||
|
}, 10)
|
||||||
}
|
}
|
||||||
setTimeout( function(){modal.focus()},10)
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalNextImage(event){
|
function saveImage(){
|
||||||
modalImageSwitch(1)
|
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
|
||||||
event.stopPropagation()
|
const tabImg2Img = gradioApp().getElementById("tab_img2img")
|
||||||
|
const saveTxt2Img = "save_txt2img"
|
||||||
|
const saveImg2Img = "save_img2img"
|
||||||
|
if (tabTxt2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById(saveTxt2Img).click()
|
||||||
|
} else if (tabImg2Img.style.display != "none") {
|
||||||
|
gradioApp().getElementById(saveImg2Img).click()
|
||||||
|
} else {
|
||||||
|
console.error("missing implementation for saving modal of this type")
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalPrevImage(event){
|
function modalSaveImage(event) {
|
||||||
modalImageSwitch(-1)
|
saveImage()
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalKeyHandler(event){
|
function modalNextImage(event) {
|
||||||
|
modalImageSwitch(1)
|
||||||
|
event.stopPropagation()
|
||||||
|
}
|
||||||
|
|
||||||
|
function modalPrevImage(event) {
|
||||||
|
modalImageSwitch(-1)
|
||||||
|
event.stopPropagation()
|
||||||
|
}
|
||||||
|
|
||||||
|
function modalKeyHandler(event) {
|
||||||
switch (event.key) {
|
switch (event.key) {
|
||||||
|
case "s":
|
||||||
|
saveImage()
|
||||||
|
break;
|
||||||
case "ArrowLeft":
|
case "ArrowLeft":
|
||||||
modalPrevImage(event)
|
modalPrevImage(event)
|
||||||
break;
|
break;
|
||||||
@ -80,21 +136,23 @@ function modalKeyHandler(event){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function showGalleryImage(){
|
function showGalleryImage() {
|
||||||
setTimeout(function() {
|
setTimeout(function() {
|
||||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
||||||
|
|
||||||
if(fullImg_preview != null){
|
if (fullImg_preview != null) {
|
||||||
fullImg_preview.forEach(function function_name(e) {
|
fullImg_preview.forEach(function function_name(e) {
|
||||||
|
if (e.dataset.modded)
|
||||||
|
return;
|
||||||
|
e.dataset.modded = true;
|
||||||
if(e && e.parentElement.tagName == 'DIV'){
|
if(e && e.parentElement.tagName == 'DIV'){
|
||||||
|
|
||||||
e.style.cursor='pointer'
|
e.style.cursor='pointer'
|
||||||
|
e.style.userSelect='none'
|
||||||
e.addEventListener('click', function (evt) {
|
e.addEventListener('click', function (evt) {
|
||||||
if(!opts.js_modal_lightbox) return;
|
if(!opts.js_modal_lightbox) return;
|
||||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initialy_zoomed)
|
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
||||||
showModal(evt)
|
showModal(evt)
|
||||||
},true);
|
}, true);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@ -102,21 +160,21 @@ function showGalleryImage(){
|
|||||||
}, 100);
|
}, 100);
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalZoomSet(modalImage, enable){
|
function modalZoomSet(modalImage, enable) {
|
||||||
if( enable ){
|
if (enable) {
|
||||||
modalImage.classList.add('modalImageFullscreen');
|
modalImage.classList.add('modalImageFullscreen');
|
||||||
} else{
|
} else {
|
||||||
modalImage.classList.remove('modalImageFullscreen');
|
modalImage.classList.remove('modalImageFullscreen');
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalZoomToggle(event){
|
function modalZoomToggle(event) {
|
||||||
modalImage = gradioApp().getElementById("modalImage");
|
modalImage = gradioApp().getElementById("modalImage");
|
||||||
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
|
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalTileImageToggle(event){
|
function modalTileImageToggle(event) {
|
||||||
const modalImage = gradioApp().getElementById("modalImage");
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
const modal = gradioApp().getElementById("lightboxModal");
|
const modal = gradioApp().getElementById("lightboxModal");
|
||||||
const isTiling = modalImage.style.display === 'none';
|
const isTiling = modalImage.style.display === 'none';
|
||||||
@ -131,17 +189,18 @@ function modalTileImageToggle(event){
|
|||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function galleryImageHandler(e){
|
function galleryImageHandler(e) {
|
||||||
if(e && e.parentElement.tagName == 'BUTTON'){
|
if (e && e.parentElement.tagName == 'BUTTON') {
|
||||||
e.onclick = showGalleryImage;
|
e.onclick = showGalleryImage;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
onUiUpdate(function(){
|
onUiUpdate(function() {
|
||||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
||||||
if(fullImg_preview != null){
|
if (fullImg_preview != null) {
|
||||||
fullImg_preview.forEach(galleryImageHandler);
|
fullImg_preview.forEach(galleryImageHandler);
|
||||||
}
|
}
|
||||||
|
updateOnBackgroundChange();
|
||||||
})
|
})
|
||||||
|
|
||||||
document.addEventListener("DOMContentLoaded", function() {
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
@ -149,13 +208,13 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
const modal = document.createElement('div')
|
const modal = document.createElement('div')
|
||||||
modal.onclick = closeModal;
|
modal.onclick = closeModal;
|
||||||
modal.id = "lightboxModal";
|
modal.id = "lightboxModal";
|
||||||
modal.tabIndex=0
|
modal.tabIndex = 0
|
||||||
modal.addEventListener('keydown', modalKeyHandler, true)
|
modal.addEventListener('keydown', modalKeyHandler, true)
|
||||||
|
|
||||||
const modalControls = document.createElement('div')
|
const modalControls = document.createElement('div')
|
||||||
modalControls.className = 'modalControls gradio-container';
|
modalControls.className = 'modalControls gradio-container';
|
||||||
modal.append(modalControls);
|
modal.append(modalControls);
|
||||||
|
|
||||||
const modalZoom = document.createElement('span')
|
const modalZoom = document.createElement('span')
|
||||||
modalZoom.className = 'modalZoom cursor';
|
modalZoom.className = 'modalZoom cursor';
|
||||||
modalZoom.innerHTML = '⤡'
|
modalZoom.innerHTML = '⤡'
|
||||||
@ -170,6 +229,14 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
modalTileImage.title = "Preview tiling";
|
modalTileImage.title = "Preview tiling";
|
||||||
modalControls.appendChild(modalTileImage)
|
modalControls.appendChild(modalTileImage)
|
||||||
|
|
||||||
|
const modalSave = document.createElement("span")
|
||||||
|
modalSave.className = "modalSave cursor"
|
||||||
|
modalSave.id = "modal_save"
|
||||||
|
modalSave.innerHTML = "🖫"
|
||||||
|
modalSave.addEventListener("click", modalSaveImage, true)
|
||||||
|
modalSave.title = "Save Image(s)"
|
||||||
|
modalControls.appendChild(modalSave)
|
||||||
|
|
||||||
const modalClose = document.createElement('span')
|
const modalClose = document.createElement('span')
|
||||||
modalClose.className = 'modalClose cursor';
|
modalClose.className = 'modalClose cursor';
|
||||||
modalClose.innerHTML = '×'
|
modalClose.innerHTML = '×'
|
||||||
@ -180,30 +247,30 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
const modalImage = document.createElement('img')
|
const modalImage = document.createElement('img')
|
||||||
modalImage.id = 'modalImage';
|
modalImage.id = 'modalImage';
|
||||||
modalImage.onclick = closeModal;
|
modalImage.onclick = closeModal;
|
||||||
modalImage.tabIndex=0
|
modalImage.tabIndex = 0
|
||||||
modalImage.addEventListener('keydown', modalKeyHandler, true)
|
modalImage.addEventListener('keydown', modalKeyHandler, true)
|
||||||
modal.appendChild(modalImage)
|
modal.appendChild(modalImage)
|
||||||
|
|
||||||
const modalPrev = document.createElement('a')
|
const modalPrev = document.createElement('a')
|
||||||
modalPrev.className = 'modalPrev';
|
modalPrev.className = 'modalPrev';
|
||||||
modalPrev.innerHTML = '❮'
|
modalPrev.innerHTML = '❮'
|
||||||
modalPrev.tabIndex=0
|
modalPrev.tabIndex = 0
|
||||||
modalPrev.addEventListener('click',modalPrevImage,true);
|
modalPrev.addEventListener('click', modalPrevImage, true);
|
||||||
modalPrev.addEventListener('keydown', modalKeyHandler, true)
|
modalPrev.addEventListener('keydown', modalKeyHandler, true)
|
||||||
modal.appendChild(modalPrev)
|
modal.appendChild(modalPrev)
|
||||||
|
|
||||||
const modalNext = document.createElement('a')
|
const modalNext = document.createElement('a')
|
||||||
modalNext.className = 'modalNext';
|
modalNext.className = 'modalNext';
|
||||||
modalNext.innerHTML = '❯'
|
modalNext.innerHTML = '❯'
|
||||||
modalNext.tabIndex=0
|
modalNext.tabIndex = 0
|
||||||
modalNext.addEventListener('click',modalNextImage,true);
|
modalNext.addEventListener('click', modalNextImage, true);
|
||||||
modalNext.addEventListener('keydown', modalKeyHandler, true)
|
modalNext.addEventListener('keydown', modalKeyHandler, true)
|
||||||
|
|
||||||
modal.appendChild(modalNext)
|
modal.appendChild(modalNext)
|
||||||
|
|
||||||
|
|
||||||
gradioApp().getRootNode().appendChild(modal)
|
gradioApp().getRootNode().appendChild(modal)
|
||||||
|
|
||||||
document.body.appendChild(modalFragment);
|
document.body.appendChild(modalFragment);
|
||||||
|
|
||||||
});
|
});
|
||||||
|
167
javascript/localization.js
Normal file
167
javascript/localization.js
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
|
||||||
|
// localization = {} -- the dict with translations is created by the backend
|
||||||
|
|
||||||
|
ignore_ids_for_localization={
|
||||||
|
setting_sd_hypernetwork: 'OPTION',
|
||||||
|
setting_sd_model_checkpoint: 'OPTION',
|
||||||
|
setting_realesrgan_enabled_models: 'OPTION',
|
||||||
|
modelmerger_primary_model_name: 'OPTION',
|
||||||
|
modelmerger_secondary_model_name: 'OPTION',
|
||||||
|
modelmerger_tertiary_model_name: 'OPTION',
|
||||||
|
train_embedding: 'OPTION',
|
||||||
|
train_hypernetwork: 'OPTION',
|
||||||
|
txt2img_style_index: 'OPTION',
|
||||||
|
txt2img_style2_index: 'OPTION',
|
||||||
|
img2img_style_index: 'OPTION',
|
||||||
|
img2img_style2_index: 'OPTION',
|
||||||
|
setting_random_artist_categories: 'SPAN',
|
||||||
|
setting_face_restoration_model: 'SPAN',
|
||||||
|
setting_realesrgan_enabled_models: 'SPAN',
|
||||||
|
extras_upscaler_1: 'SPAN',
|
||||||
|
extras_upscaler_2: 'SPAN',
|
||||||
|
}
|
||||||
|
|
||||||
|
re_num = /^[\.\d]+$/
|
||||||
|
re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u
|
||||||
|
|
||||||
|
original_lines = {}
|
||||||
|
translated_lines = {}
|
||||||
|
|
||||||
|
function textNodesUnder(el){
|
||||||
|
var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false);
|
||||||
|
while(n=walk.nextNode()) a.push(n);
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
function canBeTranslated(node, text){
|
||||||
|
if(! text) return false;
|
||||||
|
if(! node.parentElement) return false;
|
||||||
|
|
||||||
|
parentType = node.parentElement.nodeName
|
||||||
|
if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false;
|
||||||
|
|
||||||
|
if (parentType=='OPTION' || parentType=='SPAN'){
|
||||||
|
pnode = node
|
||||||
|
for(var level=0; level<4; level++){
|
||||||
|
pnode = pnode.parentElement
|
||||||
|
if(! pnode) break;
|
||||||
|
|
||||||
|
if(ignore_ids_for_localization[pnode.id] == parentType) return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(re_num.test(text)) return false;
|
||||||
|
if(re_emoji.test(text)) return false;
|
||||||
|
return true
|
||||||
|
}
|
||||||
|
|
||||||
|
function getTranslation(text){
|
||||||
|
if(! text) return undefined
|
||||||
|
|
||||||
|
if(translated_lines[text] === undefined){
|
||||||
|
original_lines[text] = 1
|
||||||
|
}
|
||||||
|
|
||||||
|
tl = localization[text]
|
||||||
|
if(tl !== undefined){
|
||||||
|
translated_lines[tl] = 1
|
||||||
|
}
|
||||||
|
|
||||||
|
return tl
|
||||||
|
}
|
||||||
|
|
||||||
|
function processTextNode(node){
|
||||||
|
text = node.textContent.trim()
|
||||||
|
|
||||||
|
if(! canBeTranslated(node, text)) return
|
||||||
|
|
||||||
|
tl = getTranslation(text)
|
||||||
|
if(tl !== undefined){
|
||||||
|
node.textContent = tl
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function processNode(node){
|
||||||
|
if(node.nodeType == 3){
|
||||||
|
processTextNode(node)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if(node.title){
|
||||||
|
tl = getTranslation(node.title)
|
||||||
|
if(tl !== undefined){
|
||||||
|
node.title = tl
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(node.placeholder){
|
||||||
|
tl = getTranslation(node.placeholder)
|
||||||
|
if(tl !== undefined){
|
||||||
|
node.placeholder = tl
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
textNodesUnder(node).forEach(function(node){
|
||||||
|
processTextNode(node)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
function dumpTranslations(){
|
||||||
|
dumped = {}
|
||||||
|
if (localization.rtl) {
|
||||||
|
dumped.rtl = true
|
||||||
|
}
|
||||||
|
|
||||||
|
Object.keys(original_lines).forEach(function(text){
|
||||||
|
if(dumped[text] !== undefined) return
|
||||||
|
|
||||||
|
dumped[text] = localization[text] || text
|
||||||
|
})
|
||||||
|
|
||||||
|
return dumped
|
||||||
|
}
|
||||||
|
|
||||||
|
onUiUpdate(function(m){
|
||||||
|
m.forEach(function(mutation){
|
||||||
|
mutation.addedNodes.forEach(function(node){
|
||||||
|
processNode(node)
|
||||||
|
})
|
||||||
|
});
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
|
processNode(gradioApp())
|
||||||
|
|
||||||
|
if (localization.rtl) { // if the language is from right to left,
|
||||||
|
(new MutationObserver((mutations, observer) => { // wait for the style to load
|
||||||
|
mutations.forEach(mutation => {
|
||||||
|
mutation.addedNodes.forEach(node => {
|
||||||
|
if (node.tagName === 'STYLE') {
|
||||||
|
observer.disconnect();
|
||||||
|
|
||||||
|
for (const x of node.sheet.rules) { // find all rtl media rules
|
||||||
|
if (Array.from(x.media || []).includes('rtl')) {
|
||||||
|
x.media.appendMedium('all'); // enable them
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
});
|
||||||
|
})).observe(gradioApp(), { childList: true });
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
function download_localization() {
|
||||||
|
text = JSON.stringify(dumpTranslations(), null, 4)
|
||||||
|
|
||||||
|
var element = document.createElement('a');
|
||||||
|
element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text));
|
||||||
|
element.setAttribute('download', "localization.json");
|
||||||
|
element.style.display = 'none';
|
||||||
|
document.body.appendChild(element);
|
||||||
|
|
||||||
|
element.click();
|
||||||
|
|
||||||
|
document.body.removeChild(element);
|
||||||
|
}
|
@ -15,7 +15,7 @@ onUiUpdate(function(){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const galleryPreviews = gradioApp().querySelectorAll('img.h-full.w-full.overflow-hidden');
|
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
|
||||||
|
|
||||||
if (galleryPreviews == null) return;
|
if (galleryPreviews == null) return;
|
||||||
|
|
||||||
@ -36,7 +36,7 @@ onUiUpdate(function(){
|
|||||||
const notification = new Notification(
|
const notification = new Notification(
|
||||||
'Stable Diffusion',
|
'Stable Diffusion',
|
||||||
{
|
{
|
||||||
body: `Generated ${imgs.size > 1 ? imgs.size - 1 : 1} image${imgs.size > 1 ? 's' : ''}`,
|
body: `Generated ${imgs.size > 1 ? imgs.size - opts.return_grid : 1} image${imgs.size > 1 ? 's' : ''}`,
|
||||||
icon: headImg,
|
icon: headImg,
|
||||||
image: headImg,
|
image: headImg,
|
||||||
}
|
}
|
||||||
|
@ -1,45 +1,142 @@
|
|||||||
// code related to showing and updating progressbar shown as the image is being made
|
// code related to showing and updating progressbar shown as the image is being made
|
||||||
global_progressbars = {}
|
global_progressbars = {}
|
||||||
|
galleries = {}
|
||||||
|
galleryObservers = {}
|
||||||
|
|
||||||
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_interrupt, id_preview, id_gallery){
|
// this tracks launches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
|
||||||
var progressbar = gradioApp().getElementById(id_progressbar)
|
timeoutIds = {}
|
||||||
|
|
||||||
|
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
|
||||||
|
// gradio 3.8's enlightened approach allows them to create two nested div elements inside each other with same id
|
||||||
|
// every time you use gr.HTML(elem_id='xxx'), so we handle this here
|
||||||
|
var progressbar = gradioApp().querySelector("#"+id_progressbar+" #"+id_progressbar)
|
||||||
|
var progressbarParent
|
||||||
|
if(progressbar){
|
||||||
|
progressbarParent = gradioApp().querySelector("#"+id_progressbar)
|
||||||
|
} else{
|
||||||
|
progressbar = gradioApp().getElementById(id_progressbar)
|
||||||
|
progressbarParent = null
|
||||||
|
}
|
||||||
|
|
||||||
|
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||||
|
|
||||||
|
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
||||||
|
if(progressbar.innerText){
|
||||||
|
let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
|
||||||
|
if(document.title != newtitle){
|
||||||
|
document.title = newtitle;
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
let newtitle = 'Stable Diffusion'
|
||||||
|
if(document.title != newtitle){
|
||||||
|
document.title = newtitle;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
||||||
global_progressbars[id_progressbar] = progressbar
|
global_progressbars[id_progressbar] = progressbar
|
||||||
|
|
||||||
var mutationObserver = new MutationObserver(function(m){
|
var mutationObserver = new MutationObserver(function(m){
|
||||||
|
if(timeoutIds[id_part]) return;
|
||||||
|
|
||||||
preview = gradioApp().getElementById(id_preview)
|
preview = gradioApp().getElementById(id_preview)
|
||||||
gallery = gradioApp().getElementById(id_gallery)
|
gallery = gradioApp().getElementById(id_gallery)
|
||||||
|
|
||||||
if(preview != null && gallery != null){
|
if(preview != null && gallery != null){
|
||||||
preview.style.width = gallery.clientWidth + "px"
|
preview.style.width = gallery.clientWidth + "px"
|
||||||
preview.style.height = gallery.clientHeight + "px"
|
preview.style.height = gallery.clientHeight + "px"
|
||||||
|
if(progressbarParent) progressbar.style.width = progressbarParent.clientWidth + "px"
|
||||||
|
|
||||||
|
//only watch gallery if there is a generation process going on
|
||||||
|
check_gallery(id_gallery);
|
||||||
|
|
||||||
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
||||||
if(!progressDiv){
|
if(progressDiv){
|
||||||
|
timeoutIds[id_part] = window.setTimeout(function() {
|
||||||
|
timeoutIds[id_part] = null
|
||||||
|
requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt)
|
||||||
|
}, 500)
|
||||||
|
} else{
|
||||||
|
if (skip) {
|
||||||
|
skip.style.display = "none"
|
||||||
|
}
|
||||||
interrupt.style.display = "none"
|
interrupt.style.display = "none"
|
||||||
|
|
||||||
|
//disconnect observer once generation finished, so user can close selected image if they want
|
||||||
|
if (galleryObservers[id_gallery]) {
|
||||||
|
galleryObservers[id_gallery].disconnect();
|
||||||
|
galleries[id_gallery] = null;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
window.setTimeout(function(){ requestMoreProgress(id_part, id_progressbar_span, id_interrupt) }, 500)
|
|
||||||
});
|
});
|
||||||
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
mutationObserver.observe( progressbar, { childList:true, subtree:true })
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function check_gallery(id_gallery){
|
||||||
|
let gallery = gradioApp().getElementById(id_gallery)
|
||||||
|
// if gallery has no change, no need to setting up observer again.
|
||||||
|
if (gallery && galleries[id_gallery] !== gallery){
|
||||||
|
galleries[id_gallery] = gallery;
|
||||||
|
if(galleryObservers[id_gallery]){
|
||||||
|
galleryObservers[id_gallery].disconnect();
|
||||||
|
}
|
||||||
|
let prevSelectedIndex = selected_gallery_index();
|
||||||
|
galleryObservers[id_gallery] = new MutationObserver(function (){
|
||||||
|
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
|
||||||
|
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
|
||||||
|
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
|
||||||
|
// automatically re-open previously selected index (if exists)
|
||||||
|
activeElement = gradioApp().activeElement;
|
||||||
|
let scrollX = window.scrollX;
|
||||||
|
let scrollY = window.scrollY;
|
||||||
|
|
||||||
|
galleryButtons[prevSelectedIndex].click();
|
||||||
|
showGalleryImage();
|
||||||
|
|
||||||
|
// When the gallery button is clicked, it gains focus and scrolls itself into view
|
||||||
|
// We need to scroll back to the previous position
|
||||||
|
setTimeout(function (){
|
||||||
|
window.scrollTo(scrollX, scrollY);
|
||||||
|
}, 50);
|
||||||
|
|
||||||
|
if(activeElement){
|
||||||
|
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
|
||||||
|
// if someone has a better solution please by all means
|
||||||
|
setTimeout(function (){
|
||||||
|
activeElement.focus({
|
||||||
|
preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
|
||||||
|
})
|
||||||
|
}, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
onUiUpdate(function(){
|
onUiUpdate(function(){
|
||||||
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
|
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_skip', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
|
||||||
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')
|
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_skip', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')
|
||||||
|
check_progressbar('ti', 'ti_progressbar', 'ti_progress_span', '', 'ti_interrupt', 'ti_preview', 'ti_gallery')
|
||||||
})
|
})
|
||||||
|
|
||||||
function requestMoreProgress(id_part, id_progressbar_span, id_interrupt){
|
function requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt){
|
||||||
btn = gradioApp().getElementById(id_part+"_check_progress");
|
btn = gradioApp().getElementById(id_part+"_check_progress");
|
||||||
if(btn==null) return;
|
if(btn==null) return;
|
||||||
|
|
||||||
btn.click();
|
btn.click();
|
||||||
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
|
||||||
|
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||||
if(progressDiv && interrupt){
|
if(progressDiv && interrupt){
|
||||||
|
if (skip) {
|
||||||
|
skip.style.display = "block"
|
||||||
|
}
|
||||||
interrupt.style.display = "block"
|
interrupt.style.display = "block"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
8
javascript/textualInversion.js
Normal file
8
javascript/textualInversion.js
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
|
||||||
|
function start_training_textual_inversion(){
|
||||||
|
requestProgress('ti')
|
||||||
|
gradioApp().querySelector('#ti_error').innerHTML=''
|
||||||
|
|
||||||
|
return args_to_array(arguments)
|
||||||
|
}
|
103
javascript/ui.js
103
javascript/ui.js
@ -1,8 +1,15 @@
|
|||||||
// various functions for interation with ui.py not large enough to warrant putting them in separate files
|
// various functions for interaction with ui.py not large enough to warrant putting them in separate files
|
||||||
|
|
||||||
|
function set_theme(theme){
|
||||||
|
gradioURL = window.location.href
|
||||||
|
if (!gradioURL.includes('?__theme=')) {
|
||||||
|
window.location.replace(gradioURL + '?__theme=' + theme);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
function selected_gallery_index(){
|
function selected_gallery_index(){
|
||||||
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item')
|
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
|
||||||
var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2')
|
var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
|
||||||
|
|
||||||
var result = -1
|
var result = -1
|
||||||
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
||||||
@ -12,7 +19,7 @@ function selected_gallery_index(){
|
|||||||
|
|
||||||
function extract_image_from_gallery(gallery){
|
function extract_image_from_gallery(gallery){
|
||||||
if(gallery.length == 1){
|
if(gallery.length == 1){
|
||||||
return gallery[0]
|
return [gallery[0]]
|
||||||
}
|
}
|
||||||
|
|
||||||
index = selected_gallery_index()
|
index = selected_gallery_index()
|
||||||
@ -21,7 +28,7 @@ function extract_image_from_gallery(gallery){
|
|||||||
return [null]
|
return [null]
|
||||||
}
|
}
|
||||||
|
|
||||||
return gallery[index];
|
return [gallery[index]];
|
||||||
}
|
}
|
||||||
|
|
||||||
function args_to_array(args){
|
function args_to_array(args){
|
||||||
@ -33,51 +40,31 @@ function args_to_array(args){
|
|||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_txt2img(){
|
function switch_to_txt2img(){
|
||||||
gradioApp().querySelectorAll('button')[0].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[0].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_img2img_img2img(){
|
function switch_to_img2img(){
|
||||||
gradioApp().querySelectorAll('button')[1].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
|
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_img2img_inpaint(){
|
function switch_to_inpaint(){
|
||||||
gradioApp().querySelectorAll('button')[1].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
|
||||||
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click();
|
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function switch_to_extras(){
|
function switch_to_extras(){
|
||||||
gradioApp().querySelectorAll('button')[2].click();
|
gradioApp().querySelector('#tabs').querySelectorAll('button')[2].click();
|
||||||
|
|
||||||
return args_to_array(arguments);
|
return args_to_array(arguments);
|
||||||
}
|
}
|
||||||
|
|
||||||
function extract_image_from_gallery_txt2img(gallery){
|
|
||||||
switch_to_txt2img()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_img2img(gallery){
|
|
||||||
switch_to_img2img_img2img()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_inpaint(gallery){
|
|
||||||
switch_to_img2img_inpaint()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function extract_image_from_gallery_extras(gallery){
|
|
||||||
switch_to_extras()
|
|
||||||
return extract_image_from_gallery(gallery);
|
|
||||||
}
|
|
||||||
|
|
||||||
function get_tab_index(tabId){
|
function get_tab_index(tabId){
|
||||||
var res = 0
|
var res = 0
|
||||||
|
|
||||||
@ -101,7 +88,8 @@ function create_tab_index_args(tabId, args){
|
|||||||
}
|
}
|
||||||
|
|
||||||
function get_extras_tab_index(){
|
function get_extras_tab_index(){
|
||||||
return create_tab_index_args('mode_extras', arguments)
|
const [,,...args] = [...arguments]
|
||||||
|
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
|
||||||
}
|
}
|
||||||
|
|
||||||
function create_submit_args(args){
|
function create_submit_args(args){
|
||||||
@ -112,7 +100,7 @@ function create_submit_args(args){
|
|||||||
|
|
||||||
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
|
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
|
||||||
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
|
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
|
||||||
// I don't know why gradio is seding outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
// I don't know why gradio is sending outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
||||||
// If gradio at some point stops sending outputs, this may break something
|
// If gradio at some point stops sending outputs, this may break something
|
||||||
if(Array.isArray(res[res.length - 3])){
|
if(Array.isArray(res[res.length - 3])){
|
||||||
res[res.length - 3] = null
|
res[res.length - 3] = null
|
||||||
@ -140,7 +128,16 @@ function submit_img2img(){
|
|||||||
|
|
||||||
function ask_for_style_name(_, prompt_text, negative_prompt_text) {
|
function ask_for_style_name(_, prompt_text, negative_prompt_text) {
|
||||||
name_ = prompt('Style name:')
|
name_ = prompt('Style name:')
|
||||||
return name_ === null ? [null, null, null]: [name_, prompt_text, negative_prompt_text]
|
return [name_, prompt_text, negative_prompt_text]
|
||||||
|
}
|
||||||
|
|
||||||
|
function confirm_clear_prompt(prompt, negative_prompt) {
|
||||||
|
if(confirm("Delete prompt?")) {
|
||||||
|
prompt = ""
|
||||||
|
negative_prompt = ""
|
||||||
|
}
|
||||||
|
|
||||||
|
return [prompt, negative_prompt]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -186,25 +183,40 @@ onUiUpdate(function(){
|
|||||||
if (!txt2img_textarea) {
|
if (!txt2img_textarea) {
|
||||||
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
|
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
|
||||||
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
|
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
|
||||||
txt2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "txt2img_generate"));
|
|
||||||
}
|
}
|
||||||
if (!img2img_textarea) {
|
if (!img2img_textarea) {
|
||||||
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
|
||||||
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
|
||||||
img2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "img2img_generate"));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
show_all_pages = gradioApp().getElementById('settings_show_all_pages')
|
||||||
|
settings_tabs = gradioApp().querySelector('#settings div')
|
||||||
|
if(show_all_pages && settings_tabs){
|
||||||
|
settings_tabs.appendChild(show_all_pages)
|
||||||
|
show_all_pages.onclick = function(){
|
||||||
|
gradioApp().querySelectorAll('#settings > div').forEach(function(elem){
|
||||||
|
elem.style.display = "block";
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
let txt2img_textarea, img2img_textarea = undefined;
|
let txt2img_textarea, img2img_textarea = undefined;
|
||||||
let wait_time = 800
|
let wait_time = 800
|
||||||
let token_timeout;
|
let token_timeout;
|
||||||
|
|
||||||
function submit_prompt(event, generate_button_id) {
|
function update_txt2img_tokens(...args) {
|
||||||
if (event.altKey && event.keyCode === 13) {
|
update_token_counter("txt2img_token_button")
|
||||||
event.preventDefault();
|
if (args.length == 2)
|
||||||
gradioApp().getElementById(generate_button_id).click();
|
return args[0]
|
||||||
return;
|
return args;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function update_img2img_tokens(...args) {
|
||||||
|
update_token_counter("img2img_token_button")
|
||||||
|
if (args.length == 2)
|
||||||
|
return args[0]
|
||||||
|
return args;
|
||||||
}
|
}
|
||||||
|
|
||||||
function update_token_counter(button_id) {
|
function update_token_counter(button_id) {
|
||||||
@ -212,3 +224,10 @@ function update_token_counter(button_id) {
|
|||||||
clearTimeout(token_timeout);
|
clearTimeout(token_timeout);
|
||||||
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
|
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function restart_reload(){
|
||||||
|
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
|
||||||
|
setTimeout(function(){location.reload()},2000)
|
||||||
|
|
||||||
|
return []
|
||||||
|
}
|
||||||
|
286
launch.py
286
launch.py
@ -4,43 +4,39 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import importlib.util
|
import importlib.util
|
||||||
import shlex
|
import shlex
|
||||||
|
import platform
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
|
||||||
dir_repos = "repositories"
|
dir_repos = "repositories"
|
||||||
dir_tmp = "tmp"
|
dir_extensions = "extensions"
|
||||||
|
|
||||||
python = sys.executable
|
python = sys.executable
|
||||||
git = os.environ.get('GIT', "git")
|
git = os.environ.get('GIT', "git")
|
||||||
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
index_url = os.environ.get('INDEX_URL', "")
|
||||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
|
||||||
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
|
||||||
|
|
||||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
|
||||||
|
|
||||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
|
||||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
|
||||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
|
|
||||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
|
||||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
|
||||||
|
|
||||||
args = shlex.split(commandline_args)
|
|
||||||
|
|
||||||
|
|
||||||
def extract_arg(args, name):
|
def extract_arg(args, name):
|
||||||
return [x for x in args if x != name], name in args
|
return [x for x in args if x != name], name in args
|
||||||
|
|
||||||
|
|
||||||
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
def extract_opt(args, name):
|
||||||
|
opt = None
|
||||||
|
is_present = False
|
||||||
|
if name in args:
|
||||||
|
is_present = True
|
||||||
|
idx = args.index(name)
|
||||||
|
del args[idx]
|
||||||
|
if idx < len(args) and args[idx][0] != "-":
|
||||||
|
opt = args[idx]
|
||||||
|
del args[idx]
|
||||||
|
return args, is_present, opt
|
||||||
|
|
||||||
|
|
||||||
def repo_dir(name):
|
def run(command, desc=None, errdesc=None, custom_env=None):
|
||||||
return os.path.join(dir_repos, name)
|
|
||||||
|
|
||||||
|
|
||||||
def run(command, desc=None, errdesc=None):
|
|
||||||
if desc is not None:
|
if desc is not None:
|
||||||
print(desc)
|
print(desc)
|
||||||
|
|
||||||
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ if custom_env is None else custom_env)
|
||||||
|
|
||||||
if result.returncode != 0:
|
if result.returncode != 0:
|
||||||
|
|
||||||
@ -55,23 +51,11 @@ stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.st
|
|||||||
return result.stdout.decode(encoding="utf8", errors="ignore")
|
return result.stdout.decode(encoding="utf8", errors="ignore")
|
||||||
|
|
||||||
|
|
||||||
def run_python(code, desc=None, errdesc=None):
|
|
||||||
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
|
||||||
|
|
||||||
|
|
||||||
def run_pip(args, desc=None):
|
|
||||||
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
|
||||||
|
|
||||||
|
|
||||||
def check_run(command):
|
def check_run(command):
|
||||||
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
||||||
return result.returncode == 0
|
return result.returncode == 0
|
||||||
|
|
||||||
|
|
||||||
def check_run_python(code):
|
|
||||||
return check_run(f'"{python}" -c "{code}"')
|
|
||||||
|
|
||||||
|
|
||||||
def is_installed(package):
|
def is_installed(package):
|
||||||
try:
|
try:
|
||||||
spec = importlib.util.find_spec(package)
|
spec = importlib.util.find_spec(package)
|
||||||
@ -81,10 +65,36 @@ def is_installed(package):
|
|||||||
return spec is not None
|
return spec is not None
|
||||||
|
|
||||||
|
|
||||||
|
def repo_dir(name):
|
||||||
|
return os.path.join(dir_repos, name)
|
||||||
|
|
||||||
|
|
||||||
|
def run_python(code, desc=None, errdesc=None):
|
||||||
|
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
||||||
|
|
||||||
|
|
||||||
|
def run_pip(args, desc=None):
|
||||||
|
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
|
||||||
|
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
||||||
|
|
||||||
|
|
||||||
|
def check_run_python(code):
|
||||||
|
return check_run(f'"{python}" -c "{code}"')
|
||||||
|
|
||||||
|
|
||||||
def git_clone(url, dir, name, commithash=None):
|
def git_clone(url, dir, name, commithash=None):
|
||||||
# TODO clone into temporary dir and move if successful
|
# TODO clone into temporary dir and move if successful
|
||||||
|
|
||||||
if os.path.exists(dir):
|
if os.path.exists(dir):
|
||||||
|
if commithash is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
|
||||||
|
if current_hash == commithash:
|
||||||
|
return
|
||||||
|
|
||||||
|
run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
|
||||||
|
run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
|
||||||
return
|
return
|
||||||
|
|
||||||
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
|
||||||
@ -92,48 +102,194 @@ def git_clone(url, dir, name, commithash=None):
|
|||||||
if commithash is not None:
|
if commithash is not None:
|
||||||
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
||||||
|
|
||||||
|
|
||||||
try:
|
def version_check(commit):
|
||||||
commit = run(f"{git} rev-parse HEAD").strip()
|
try:
|
||||||
except Exception:
|
import requests
|
||||||
commit = "<none>"
|
commits = requests.get('https://api.github.com/repos/AUTOMATIC1111/stable-diffusion-webui/branches/master').json()
|
||||||
|
if commit != "<none>" and commits['commit']['sha'] != commit:
|
||||||
print(f"Python {sys.version}")
|
print("--------------------------------------------------------")
|
||||||
print(f"Commit hash: {commit}")
|
print("| You are not up to date with the most recent release. |")
|
||||||
|
print("| Consider running `git pull` to update. |")
|
||||||
|
print("--------------------------------------------------------")
|
||||||
|
elif commits['commit']['sha'] == commit:
|
||||||
|
print("You are up to date with the most recent release.")
|
||||||
|
else:
|
||||||
|
print("Not a git clone, can't perform version check.")
|
||||||
|
except Exception as e:
|
||||||
|
print("version check failed", e)
|
||||||
|
|
||||||
|
|
||||||
if not is_installed("torch") or not is_installed("torchvision"):
|
def run_extension_installer(extension_dir):
|
||||||
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
path_installer = os.path.join(extension_dir, "install.py")
|
||||||
|
if not os.path.isfile(path_installer):
|
||||||
|
return
|
||||||
|
|
||||||
if not skip_torch_cuda_test:
|
try:
|
||||||
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
env = os.environ.copy()
|
||||||
|
env['PYTHONPATH'] = os.path.abspath(".")
|
||||||
|
|
||||||
if not is_installed("gfpgan"):
|
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
|
||||||
run_pip(f"install {gfpgan_package}", "gfpgan")
|
except Exception as e:
|
||||||
|
print(e, file=sys.stderr)
|
||||||
|
|
||||||
os.makedirs(dir_repos, exist_ok=True)
|
|
||||||
|
|
||||||
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
def list_extensions(settings_file):
|
||||||
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
settings = {}
|
||||||
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
|
||||||
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
|
||||||
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
|
||||||
|
|
||||||
if not is_installed("lpips"):
|
try:
|
||||||
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
if os.path.isfile(settings_file):
|
||||||
|
with open(settings_file, "r", encoding="utf8") as file:
|
||||||
|
settings = json.load(file)
|
||||||
|
except Exception as e:
|
||||||
|
print(e, file=sys.stderr)
|
||||||
|
|
||||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
disabled_extensions = set(settings.get('disabled_extensions', []))
|
||||||
|
|
||||||
sys.argv += args
|
return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
|
||||||
|
|
||||||
if "--exit" in args:
|
|
||||||
print("Exiting because of --exit argument")
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
def start_webui():
|
def run_extensions_installers(settings_file):
|
||||||
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
if not os.path.isdir(dir_extensions):
|
||||||
|
return
|
||||||
|
|
||||||
|
for dirname_extension in list_extensions(settings_file):
|
||||||
|
run_extension_installer(os.path.join(dir_extensions, dirname_extension))
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_environment():
|
||||||
|
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
||||||
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||||
|
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
||||||
|
|
||||||
|
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||||
|
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
||||||
|
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
|
||||||
|
|
||||||
|
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
|
||||||
|
|
||||||
|
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
||||||
|
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
|
||||||
|
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
||||||
|
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
||||||
|
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
||||||
|
|
||||||
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
|
||||||
|
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||||
|
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
|
||||||
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||||
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||||
|
|
||||||
|
sys.argv += shlex.split(commandline_args)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
|
||||||
|
args, _ = parser.parse_known_args(sys.argv)
|
||||||
|
|
||||||
|
sys.argv, _ = extract_arg(sys.argv, '-f')
|
||||||
|
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
|
||||||
|
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
|
||||||
|
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
|
||||||
|
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
|
||||||
|
xformers = '--xformers' in sys.argv
|
||||||
|
ngrok = '--ngrok' in sys.argv
|
||||||
|
|
||||||
|
try:
|
||||||
|
commit = run(f"{git} rev-parse HEAD").strip()
|
||||||
|
except Exception:
|
||||||
|
commit = "<none>"
|
||||||
|
|
||||||
|
print(f"Python {sys.version}")
|
||||||
|
print(f"Commit hash: {commit}")
|
||||||
|
|
||||||
|
if not is_installed("torch") or not is_installed("torchvision"):
|
||||||
|
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
||||||
|
|
||||||
|
if not skip_torch_cuda_test:
|
||||||
|
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
||||||
|
|
||||||
|
if not is_installed("gfpgan"):
|
||||||
|
run_pip(f"install {gfpgan_package}", "gfpgan")
|
||||||
|
|
||||||
|
if not is_installed("clip"):
|
||||||
|
run_pip(f"install {clip_package}", "clip")
|
||||||
|
|
||||||
|
if not is_installed("open_clip"):
|
||||||
|
run_pip(f"install {openclip_package}", "open_clip")
|
||||||
|
|
||||||
|
if (not is_installed("xformers") or reinstall_xformers) and xformers:
|
||||||
|
if platform.system() == "Windows":
|
||||||
|
if platform.python_version().startswith("3.10"):
|
||||||
|
run_pip(f"install -U -I --no-deps {xformers_windows_package}", "xformers")
|
||||||
|
else:
|
||||||
|
print("Installation of xformers is not supported in this version of Python.")
|
||||||
|
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
|
||||||
|
if not is_installed("xformers"):
|
||||||
|
exit(0)
|
||||||
|
elif platform.system() == "Linux":
|
||||||
|
run_pip("install xformers", "xformers")
|
||||||
|
|
||||||
|
if not is_installed("pyngrok") and ngrok:
|
||||||
|
run_pip("install pyngrok", "ngrok")
|
||||||
|
|
||||||
|
os.makedirs(dir_repos, exist_ok=True)
|
||||||
|
|
||||||
|
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||||
|
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||||
|
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||||
|
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||||
|
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||||
|
|
||||||
|
if not is_installed("lpips"):
|
||||||
|
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
||||||
|
|
||||||
|
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||||
|
|
||||||
|
run_extensions_installers(settings_file=args.ui_settings_file)
|
||||||
|
|
||||||
|
if update_check:
|
||||||
|
version_check(commit)
|
||||||
|
|
||||||
|
if "--exit" in sys.argv:
|
||||||
|
print("Exiting because of --exit argument")
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
if run_tests:
|
||||||
|
exitcode = tests(test_dir)
|
||||||
|
exit(exitcode)
|
||||||
|
|
||||||
|
|
||||||
|
def tests(test_dir):
|
||||||
|
if "--api" not in sys.argv:
|
||||||
|
sys.argv.append("--api")
|
||||||
|
if "--ckpt" not in sys.argv:
|
||||||
|
sys.argv.append("--ckpt")
|
||||||
|
sys.argv.append("./test/test_files/empty.pt")
|
||||||
|
if "--skip-torch-cuda-test" not in sys.argv:
|
||||||
|
sys.argv.append("--skip-torch-cuda-test")
|
||||||
|
|
||||||
|
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
|
||||||
|
|
||||||
|
with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
|
||||||
|
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
|
||||||
|
|
||||||
|
import test.server_poll
|
||||||
|
exitcode = test.server_poll.run_tests(proc, test_dir)
|
||||||
|
|
||||||
|
print(f"Stopping Web UI process with id {proc.pid}")
|
||||||
|
proc.kill()
|
||||||
|
return exitcode
|
||||||
|
|
||||||
|
|
||||||
|
def start():
|
||||||
|
print(f"Launching {'API server' if '--nowebui' in sys.argv else 'Web UI'} with arguments: {' '.join(sys.argv[1:])}")
|
||||||
import webui
|
import webui
|
||||||
webui.webui()
|
if '--nowebui' in sys.argv:
|
||||||
|
webui.api_only()
|
||||||
|
else:
|
||||||
|
webui.webui()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
start_webui()
|
prepare_environment()
|
||||||
|
start()
|
||||||
|
0
localizations/Put localization files here.txt
Normal file
0
localizations/Put localization files here.txt
Normal file
BIN
models/VAE-approx/model.pt
Normal file
BIN
models/VAE-approx/model.pt
Normal file
Binary file not shown.
0
models/VAE/Put VAE here.txt
Normal file
0
models/VAE/Put VAE here.txt
Normal file
462
modules/api/api.py
Normal file
462
modules/api/api.py
Normal file
@ -0,0 +1,462 @@
|
|||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import time
|
||||||
|
import datetime
|
||||||
|
import uvicorn
|
||||||
|
from threading import Lock
|
||||||
|
from io import BytesIO
|
||||||
|
from gradio.processing_utils import decode_base64_to_file
|
||||||
|
from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
|
||||||
|
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||||
|
from secrets import compare_digest
|
||||||
|
|
||||||
|
import modules.shared as shared
|
||||||
|
from modules import sd_samplers, deepbooru, sd_hijack
|
||||||
|
from modules.api.models import *
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
|
from modules.extras import run_extras, run_pnginfo
|
||||||
|
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
|
||||||
|
from modules.textual_inversion.preprocess import preprocess
|
||||||
|
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
|
||||||
|
from PIL import PngImagePlugin,Image
|
||||||
|
from modules.sd_models import checkpoints_list, find_checkpoint_config
|
||||||
|
from modules.realesrgan_model import get_realesrgan_models
|
||||||
|
from modules import devices
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
def upscaler_to_index(name: str):
|
||||||
|
try:
|
||||||
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||||
|
except:
|
||||||
|
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
|
||||||
|
|
||||||
|
def validate_sampler_name(name):
|
||||||
|
config = sd_samplers.all_samplers_map.get(name, None)
|
||||||
|
if config is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||||
|
|
||||||
|
return name
|
||||||
|
|
||||||
|
def setUpscalers(req: dict):
|
||||||
|
reqDict = vars(req)
|
||||||
|
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
|
||||||
|
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
|
||||||
|
reqDict.pop('upscaler_1')
|
||||||
|
reqDict.pop('upscaler_2')
|
||||||
|
return reqDict
|
||||||
|
|
||||||
|
def decode_base64_to_image(encoding):
|
||||||
|
if encoding.startswith("data:image/"):
|
||||||
|
encoding = encoding.split(";")[1].split(",")[1]
|
||||||
|
return Image.open(BytesIO(base64.b64decode(encoding)))
|
||||||
|
|
||||||
|
def encode_pil_to_base64(image):
|
||||||
|
with io.BytesIO() as output_bytes:
|
||||||
|
|
||||||
|
# Copy any text-only metadata
|
||||||
|
use_metadata = False
|
||||||
|
metadata = PngImagePlugin.PngInfo()
|
||||||
|
for key, value in image.info.items():
|
||||||
|
if isinstance(key, str) and isinstance(value, str):
|
||||||
|
metadata.add_text(key, value)
|
||||||
|
use_metadata = True
|
||||||
|
|
||||||
|
image.save(
|
||||||
|
output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
|
||||||
|
)
|
||||||
|
bytes_data = output_bytes.getvalue()
|
||||||
|
return base64.b64encode(bytes_data)
|
||||||
|
|
||||||
|
def api_middleware(app: FastAPI):
|
||||||
|
@app.middleware("http")
|
||||||
|
async def log_and_time(req: Request, call_next):
|
||||||
|
ts = time.time()
|
||||||
|
res: Response = await call_next(req)
|
||||||
|
duration = str(round(time.time() - ts, 4))
|
||||||
|
res.headers["X-Process-Time"] = duration
|
||||||
|
endpoint = req.scope.get('path', 'err')
|
||||||
|
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
|
||||||
|
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
|
||||||
|
t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
|
||||||
|
code = res.status_code,
|
||||||
|
ver = req.scope.get('http_version', '0.0'),
|
||||||
|
cli = req.scope.get('client', ('0:0.0.0', 0))[0],
|
||||||
|
prot = req.scope.get('scheme', 'err'),
|
||||||
|
method = req.scope.get('method', 'err'),
|
||||||
|
endpoint = endpoint,
|
||||||
|
duration = duration,
|
||||||
|
))
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
class Api:
|
||||||
|
def __init__(self, app: FastAPI, queue_lock: Lock):
|
||||||
|
if shared.cmd_opts.api_auth:
|
||||||
|
self.credentials = dict()
|
||||||
|
for auth in shared.cmd_opts.api_auth.split(","):
|
||||||
|
user, password = auth.split(":")
|
||||||
|
self.credentials[user] = password
|
||||||
|
|
||||||
|
self.router = APIRouter()
|
||||||
|
self.app = app
|
||||||
|
self.queue_lock = queue_lock
|
||||||
|
api_middleware(self.app)
|
||||||
|
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
||||||
|
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
||||||
|
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
|
||||||
|
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
|
||||||
|
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
|
||||||
|
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
|
||||||
|
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||||
|
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
|
||||||
|
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
|
||||||
|
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
|
||||||
|
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
|
||||||
|
|
||||||
|
def add_api_route(self, path: str, endpoint, **kwargs):
|
||||||
|
if shared.cmd_opts.api_auth:
|
||||||
|
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
|
||||||
|
return self.app.add_api_route(path, endpoint, **kwargs)
|
||||||
|
|
||||||
|
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
|
||||||
|
if credentials.username in self.credentials:
|
||||||
|
if compare_digest(credentials.password, self.credentials[credentials.username]):
|
||||||
|
return True
|
||||||
|
|
||||||
|
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||||
|
|
||||||
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||||
|
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||||
|
"do_not_save_samples": True,
|
||||||
|
"do_not_save_grid": True
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if populate.sampler_name:
|
||||||
|
populate.sampler_index = None # prevent a warning later on
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
processed = process_images(p)
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
|
||||||
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
|
||||||
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
|
init_images = img2imgreq.init_images
|
||||||
|
if init_images is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
|
|
||||||
|
mask = img2imgreq.mask
|
||||||
|
if mask:
|
||||||
|
mask = decode_base64_to_image(mask)
|
||||||
|
|
||||||
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||||
|
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
|
||||||
|
"do_not_save_samples": True,
|
||||||
|
"do_not_save_grid": True,
|
||||||
|
"mask": mask
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if populate.sampler_name:
|
||||||
|
populate.sampler_index = None # prevent a warning later on
|
||||||
|
|
||||||
|
args = vars(populate)
|
||||||
|
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||||
|
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
processed = process_images(p)
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
|
if not img2imgreq.include_init_images:
|
||||||
|
img2imgreq.init_images = None
|
||||||
|
img2imgreq.mask = None
|
||||||
|
|
||||||
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
|
||||||
|
|
||||||
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||||
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
reqDict['image'] = decode_base64_to_image(reqDict['image'])
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||||
|
|
||||||
|
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
|
||||||
|
|
||||||
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
||||||
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
def prepareFiles(file):
|
||||||
|
file = decode_base64_to_file(file.data, file_path=file.name)
|
||||||
|
file.orig_name = file.name
|
||||||
|
return file
|
||||||
|
|
||||||
|
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
|
||||||
|
reqDict.pop('imageList')
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||||
|
|
||||||
|
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
||||||
|
|
||||||
|
def pnginfoapi(self, req: PNGInfoRequest):
|
||||||
|
if(not req.image.strip()):
|
||||||
|
return PNGInfoResponse(info="")
|
||||||
|
|
||||||
|
result = run_pnginfo(decode_base64_to_image(req.image.strip()))
|
||||||
|
|
||||||
|
return PNGInfoResponse(info=result[1])
|
||||||
|
|
||||||
|
def progressapi(self, req: ProgressRequest = Depends()):
|
||||||
|
# copy from check_progress_call of ui.py
|
||||||
|
|
||||||
|
if shared.state.job_count == 0:
|
||||||
|
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
|
||||||
|
|
||||||
|
# avoid dividing zero
|
||||||
|
progress = 0.01
|
||||||
|
|
||||||
|
if shared.state.job_count > 0:
|
||||||
|
progress += shared.state.job_no / shared.state.job_count
|
||||||
|
if shared.state.sampling_steps > 0:
|
||||||
|
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
|
||||||
|
|
||||||
|
time_since_start = time.time() - shared.state.time_start
|
||||||
|
eta = (time_since_start/progress)
|
||||||
|
eta_relative = eta-time_since_start
|
||||||
|
|
||||||
|
progress = min(progress, 1)
|
||||||
|
|
||||||
|
shared.state.set_current_image()
|
||||||
|
|
||||||
|
current_image = None
|
||||||
|
if shared.state.current_image and not req.skip_current_image:
|
||||||
|
current_image = encode_pil_to_base64(shared.state.current_image)
|
||||||
|
|
||||||
|
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
|
||||||
|
|
||||||
|
def interrogateapi(self, interrogatereq: InterrogateRequest):
|
||||||
|
image_b64 = interrogatereq.image
|
||||||
|
if image_b64 is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Image not found")
|
||||||
|
|
||||||
|
img = decode_base64_to_image(image_b64)
|
||||||
|
img = img.convert('RGB')
|
||||||
|
|
||||||
|
# Override object param
|
||||||
|
with self.queue_lock:
|
||||||
|
if interrogatereq.model == "clip":
|
||||||
|
processed = shared.interrogator.interrogate(img)
|
||||||
|
elif interrogatereq.model == "deepdanbooru":
|
||||||
|
processed = deepbooru.model.tag(img)
|
||||||
|
else:
|
||||||
|
raise HTTPException(status_code=404, detail="Model not found")
|
||||||
|
|
||||||
|
return InterrogateResponse(caption=processed)
|
||||||
|
|
||||||
|
def interruptapi(self):
|
||||||
|
shared.state.interrupt()
|
||||||
|
|
||||||
|
return {}
|
||||||
|
|
||||||
|
def skip(self):
|
||||||
|
shared.state.skip()
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
options = {}
|
||||||
|
for key in shared.opts.data.keys():
|
||||||
|
metadata = shared.opts.data_labels.get(key)
|
||||||
|
if(metadata is not None):
|
||||||
|
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
|
||||||
|
else:
|
||||||
|
options.update({key: shared.opts.data.get(key, None)})
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
def set_config(self, req: Dict[str, Any]):
|
||||||
|
for k, v in req.items():
|
||||||
|
shared.opts.set(k, v)
|
||||||
|
|
||||||
|
shared.opts.save(shared.config_filename)
|
||||||
|
return
|
||||||
|
|
||||||
|
def get_cmd_flags(self):
|
||||||
|
return vars(shared.cmd_opts)
|
||||||
|
|
||||||
|
def get_samplers(self):
|
||||||
|
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
|
||||||
|
|
||||||
|
def get_upscalers(self):
|
||||||
|
upscalers = []
|
||||||
|
|
||||||
|
for upscaler in shared.sd_upscalers:
|
||||||
|
u = upscaler.scaler
|
||||||
|
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
|
||||||
|
|
||||||
|
return upscalers
|
||||||
|
|
||||||
|
def get_sd_models(self):
|
||||||
|
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
|
||||||
|
|
||||||
|
def get_hypernetworks(self):
|
||||||
|
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
|
||||||
|
|
||||||
|
def get_face_restorers(self):
|
||||||
|
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
|
||||||
|
|
||||||
|
def get_realesrgan_models(self):
|
||||||
|
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
|
||||||
|
|
||||||
|
def get_prompt_styles(self):
|
||||||
|
styleList = []
|
||||||
|
for k in shared.prompt_styles.styles:
|
||||||
|
style = shared.prompt_styles.styles[k]
|
||||||
|
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
|
||||||
|
|
||||||
|
return styleList
|
||||||
|
|
||||||
|
def get_artists_categories(self):
|
||||||
|
return shared.artist_db.cats
|
||||||
|
|
||||||
|
def get_artists(self):
|
||||||
|
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
|
||||||
|
|
||||||
|
def get_embeddings(self):
|
||||||
|
db = sd_hijack.model_hijack.embedding_db
|
||||||
|
|
||||||
|
def convert_embedding(embedding):
|
||||||
|
return {
|
||||||
|
"step": embedding.step,
|
||||||
|
"sd_checkpoint": embedding.sd_checkpoint,
|
||||||
|
"sd_checkpoint_name": embedding.sd_checkpoint_name,
|
||||||
|
"shape": embedding.shape,
|
||||||
|
"vectors": embedding.vectors,
|
||||||
|
}
|
||||||
|
|
||||||
|
def convert_embeddings(embeddings):
|
||||||
|
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
|
||||||
|
|
||||||
|
return {
|
||||||
|
"loaded": convert_embeddings(db.word_embeddings),
|
||||||
|
"skipped": convert_embeddings(db.skipped_embeddings),
|
||||||
|
}
|
||||||
|
|
||||||
|
def refresh_checkpoints(self):
|
||||||
|
shared.refresh_checkpoints()
|
||||||
|
|
||||||
|
def create_embedding(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
filename = create_embedding(**args) # create empty embedding
|
||||||
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
|
||||||
|
shared.state.end()
|
||||||
|
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "create embedding error: {error}".format(error = e))
|
||||||
|
|
||||||
|
def create_hypernetwork(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
filename = create_hypernetwork(**args) # create empty embedding
|
||||||
|
shared.state.end()
|
||||||
|
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
|
||||||
|
|
||||||
|
def preprocess(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = 'preprocess complete')
|
||||||
|
except KeyError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
|
||||||
|
except AssertionError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
|
||||||
|
except FileNotFoundError as e:
|
||||||
|
shared.state.end()
|
||||||
|
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
|
||||||
|
|
||||||
|
def train_embedding(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||||
|
error = None
|
||||||
|
filename = ''
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
try:
|
||||||
|
embedding, filename = train_embedding(**args) # can take a long time to complete
|
||||||
|
except Exception as e:
|
||||||
|
error = e
|
||||||
|
finally:
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||||
|
except AssertionError as msg:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
|
||||||
|
|
||||||
|
def train_hypernetwork(self, args: dict):
|
||||||
|
try:
|
||||||
|
shared.state.begin()
|
||||||
|
initial_hypernetwork = shared.loaded_hypernetwork
|
||||||
|
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||||
|
error = None
|
||||||
|
filename = ''
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
try:
|
||||||
|
hypernetwork, filename = train_hypernetwork(*args)
|
||||||
|
except Exception as e:
|
||||||
|
error = e
|
||||||
|
finally:
|
||||||
|
shared.loaded_hypernetwork = initial_hypernetwork
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
if not apply_optimizations:
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||||
|
except AssertionError as msg:
|
||||||
|
shared.state.end()
|
||||||
|
return TrainResponse(info = "train embedding error: {error}".format(error = error))
|
||||||
|
|
||||||
|
def launch(self, server_name, port):
|
||||||
|
self.app.include_router(self.router)
|
||||||
|
uvicorn.run(self.app, host=server_name, port=port)
|
261
modules/api/models.py
Normal file
261
modules/api/models.py
Normal file
@ -0,0 +1,261 @@
|
|||||||
|
import inspect
|
||||||
|
from pydantic import BaseModel, Field, create_model
|
||||||
|
from typing import Any, Optional
|
||||||
|
from typing_extensions import Literal
|
||||||
|
from inflection import underscore
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||||
|
from modules.shared import sd_upscalers, opts, parser
|
||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
API_NOT_ALLOWED = [
|
||||||
|
"self",
|
||||||
|
"kwargs",
|
||||||
|
"sd_model",
|
||||||
|
"outpath_samples",
|
||||||
|
"outpath_grids",
|
||||||
|
"sampler_index",
|
||||||
|
"do_not_save_samples",
|
||||||
|
"do_not_save_grid",
|
||||||
|
"extra_generation_params",
|
||||||
|
"overlay_images",
|
||||||
|
"do_not_reload_embeddings",
|
||||||
|
"seed_enable_extras",
|
||||||
|
"prompt_for_display",
|
||||||
|
"sampler_noise_scheduler_override",
|
||||||
|
"ddim_discretize"
|
||||||
|
]
|
||||||
|
|
||||||
|
class ModelDef(BaseModel):
|
||||||
|
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||||
|
|
||||||
|
field: str
|
||||||
|
field_alias: str
|
||||||
|
field_type: Any
|
||||||
|
field_value: Any
|
||||||
|
field_exclude: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
class PydanticModelGenerator:
|
||||||
|
"""
|
||||||
|
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||||
|
source_data is a snapshot of the default values produced by the class
|
||||||
|
params are the names of the actual keys required by __init__
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = None,
|
||||||
|
class_instance = None,
|
||||||
|
additional_fields = None,
|
||||||
|
):
|
||||||
|
def field_type_generator(k, v):
|
||||||
|
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||||
|
# print(k, v.annotation, v.default)
|
||||||
|
field_type = v.annotation
|
||||||
|
|
||||||
|
return Optional[field_type]
|
||||||
|
|
||||||
|
def merge_class_params(class_):
|
||||||
|
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||||
|
parameters = {}
|
||||||
|
for classes in all_classes:
|
||||||
|
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||||
|
return parameters
|
||||||
|
|
||||||
|
|
||||||
|
self._model_name = model_name
|
||||||
|
self._class_data = merge_class_params(class_instance)
|
||||||
|
|
||||||
|
self._model_def = [
|
||||||
|
ModelDef(
|
||||||
|
field=underscore(k),
|
||||||
|
field_alias=k,
|
||||||
|
field_type=field_type_generator(k, v),
|
||||||
|
field_value=v.default
|
||||||
|
)
|
||||||
|
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||||
|
]
|
||||||
|
|
||||||
|
for fields in additional_fields:
|
||||||
|
self._model_def.append(ModelDef(
|
||||||
|
field=underscore(fields["key"]),
|
||||||
|
field_alias=fields["key"],
|
||||||
|
field_type=fields["type"],
|
||||||
|
field_value=fields["default"],
|
||||||
|
field_exclude=fields["exclude"] if "exclude" in fields else False))
|
||||||
|
|
||||||
|
def generate_model(self):
|
||||||
|
"""
|
||||||
|
Creates a pydantic BaseModel
|
||||||
|
from the json and overrides provided at initialization
|
||||||
|
"""
|
||||||
|
fields = {
|
||||||
|
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
|
||||||
|
}
|
||||||
|
DynamicModel = create_model(self._model_name, **fields)
|
||||||
|
DynamicModel.__config__.allow_population_by_field_name = True
|
||||||
|
DynamicModel.__config__.allow_mutation = True
|
||||||
|
return DynamicModel
|
||||||
|
|
||||||
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingTxt2Img",
|
||||||
|
StableDiffusionProcessingTxt2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingImg2Img",
|
||||||
|
StableDiffusionProcessingImg2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
||||||
|
).generate_model()
|
||||||
|
|
||||||
|
class TextToImageResponse(BaseModel):
|
||||||
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ImageToImageResponse(BaseModel):
|
||||||
|
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ExtrasBaseRequest(BaseModel):
|
||||||
|
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
|
||||||
|
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
|
||||||
|
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
|
||||||
|
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
|
||||||
|
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
|
||||||
|
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||||
|
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
|
||||||
|
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
||||||
|
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
|
||||||
|
|
||||||
|
class ExtraBaseResponse(BaseModel):
|
||||||
|
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageRequest(ExtrasBaseRequest):
|
||||||
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageResponse(ExtraBaseResponse):
|
||||||
|
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
|
||||||
|
class FileData(BaseModel):
|
||||||
|
data: str = Field(title="File data", description="Base64 representation of the file")
|
||||||
|
name: str = Field(title="File name")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
|
||||||
|
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesResponse(ExtraBaseResponse):
|
||||||
|
images: List[str] = Field(title="Images", description="The generated images in base64 format.")
|
||||||
|
|
||||||
|
class PNGInfoRequest(BaseModel):
|
||||||
|
image: str = Field(title="Image", description="The base64 encoded PNG image")
|
||||||
|
|
||||||
|
class PNGInfoResponse(BaseModel):
|
||||||
|
info: str = Field(title="Image info", description="A string with all the info the image had")
|
||||||
|
|
||||||
|
class ProgressRequest(BaseModel):
|
||||||
|
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
|
||||||
|
|
||||||
|
class ProgressResponse(BaseModel):
|
||||||
|
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
|
||||||
|
eta_relative: float = Field(title="ETA in secs")
|
||||||
|
state: dict = Field(title="State", description="The current state snapshot")
|
||||||
|
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
|
||||||
|
|
||||||
|
class InterrogateRequest(BaseModel):
|
||||||
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
||||||
|
model: str = Field(default="clip", title="Model", description="The interrogate model used.")
|
||||||
|
|
||||||
|
class InterrogateResponse(BaseModel):
|
||||||
|
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
||||||
|
|
||||||
|
class TrainResponse(BaseModel):
|
||||||
|
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
|
||||||
|
|
||||||
|
class CreateResponse(BaseModel):
|
||||||
|
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
|
||||||
|
|
||||||
|
class PreprocessResponse(BaseModel):
|
||||||
|
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
|
||||||
|
|
||||||
|
fields = {}
|
||||||
|
for key, metadata in opts.data_labels.items():
|
||||||
|
value = opts.data.get(key)
|
||||||
|
optType = opts.typemap.get(type(metadata.default), type(value))
|
||||||
|
|
||||||
|
if (metadata is not None):
|
||||||
|
fields.update({key: (Optional[optType], Field(
|
||||||
|
default=metadata.default ,description=metadata.label))})
|
||||||
|
else:
|
||||||
|
fields.update({key: (Optional[optType], Field())})
|
||||||
|
|
||||||
|
OptionsModel = create_model("Options", **fields)
|
||||||
|
|
||||||
|
flags = {}
|
||||||
|
_options = vars(parser)['_option_string_actions']
|
||||||
|
for key in _options:
|
||||||
|
if(_options[key].dest != 'help'):
|
||||||
|
flag = _options[key]
|
||||||
|
_type = str
|
||||||
|
if _options[key].default is not None: _type = type(_options[key].default)
|
||||||
|
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
|
||||||
|
|
||||||
|
FlagsModel = create_model("Flags", **flags)
|
||||||
|
|
||||||
|
class SamplerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
aliases: List[str] = Field(title="Aliases")
|
||||||
|
options: Dict[str, str] = Field(title="Options")
|
||||||
|
|
||||||
|
class UpscalerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
model_name: Optional[str] = Field(title="Model Name")
|
||||||
|
model_path: Optional[str] = Field(title="Path")
|
||||||
|
model_url: Optional[str] = Field(title="URL")
|
||||||
|
|
||||||
|
class SDModelItem(BaseModel):
|
||||||
|
title: str = Field(title="Title")
|
||||||
|
model_name: str = Field(title="Model Name")
|
||||||
|
hash: str = Field(title="Hash")
|
||||||
|
filename: str = Field(title="Filename")
|
||||||
|
config: str = Field(title="Config file")
|
||||||
|
|
||||||
|
class HypernetworkItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
path: Optional[str] = Field(title="Path")
|
||||||
|
|
||||||
|
class FaceRestorerItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
cmd_dir: Optional[str] = Field(title="Path")
|
||||||
|
|
||||||
|
class RealesrganItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
path: Optional[str] = Field(title="Path")
|
||||||
|
scale: Optional[int] = Field(title="Scale")
|
||||||
|
|
||||||
|
class PromptStyleItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
prompt: Optional[str] = Field(title="Prompt")
|
||||||
|
negative_prompt: Optional[str] = Field(title="Negative Prompt")
|
||||||
|
|
||||||
|
class ArtistItem(BaseModel):
|
||||||
|
name: str = Field(title="Name")
|
||||||
|
score: float = Field(title="Score")
|
||||||
|
category: str = Field(title="Category")
|
||||||
|
|
||||||
|
class EmbeddingItem(BaseModel):
|
||||||
|
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
|
||||||
|
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
|
||||||
|
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
|
||||||
|
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
|
||||||
|
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
|
||||||
|
|
||||||
|
class EmbeddingsResponse(BaseModel):
|
||||||
|
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
|
||||||
|
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
|
@ -1,102 +0,0 @@
|
|||||||
import functools
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.nn.init as init
|
|
||||||
|
|
||||||
|
|
||||||
def initialize_weights(net_l, scale=1):
|
|
||||||
if not isinstance(net_l, list):
|
|
||||||
net_l = [net_l]
|
|
||||||
for net in net_l:
|
|
||||||
for m in net.modules():
|
|
||||||
if isinstance(m, nn.Conv2d):
|
|
||||||
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
|
||||||
m.weight.data *= scale # for residual block
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.data.zero_()
|
|
||||||
elif isinstance(m, nn.Linear):
|
|
||||||
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
|
|
||||||
m.weight.data *= scale
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.data.zero_()
|
|
||||||
elif isinstance(m, nn.BatchNorm2d):
|
|
||||||
init.constant_(m.weight, 1)
|
|
||||||
init.constant_(m.bias.data, 0.0)
|
|
||||||
|
|
||||||
|
|
||||||
def make_layer(block, n_layers):
|
|
||||||
layers = []
|
|
||||||
for _ in range(n_layers):
|
|
||||||
layers.append(block())
|
|
||||||
return nn.Sequential(*layers)
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualDenseBlock_5C(nn.Module):
|
|
||||||
def __init__(self, nf=64, gc=32, bias=True):
|
|
||||||
super(ResidualDenseBlock_5C, self).__init__()
|
|
||||||
# gc: growth channel, i.e. intermediate channels
|
|
||||||
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
# initialization
|
|
||||||
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x1 = self.lrelu(self.conv1(x))
|
|
||||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
||||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
||||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
||||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
||||||
return x5 * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDB(nn.Module):
|
|
||||||
'''Residual in Residual Dense Block'''
|
|
||||||
|
|
||||||
def __init__(self, nf, gc=32):
|
|
||||||
super(RRDB, self).__init__()
|
|
||||||
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = self.RDB1(x)
|
|
||||||
out = self.RDB2(out)
|
|
||||||
out = self.RDB3(out)
|
|
||||||
return out * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDBNet(nn.Module):
|
|
||||||
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
|
|
||||||
super(RRDBNet, self).__init__()
|
|
||||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
|
||||||
self.sf = sf
|
|
||||||
|
|
||||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
||||||
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
|
||||||
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
#### upsampling
|
|
||||||
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
if self.sf==4:
|
|
||||||
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
||||||
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
fea = self.conv_first(x)
|
|
||||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
|
||||||
fea = fea + trunk
|
|
||||||
|
|
||||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
if self.sf==4:
|
|
||||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
||||||
|
|
||||||
return out
|
|
98
modules/call_queue.py
Normal file
98
modules/call_queue.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
import html
|
||||||
|
import sys
|
||||||
|
import threading
|
||||||
|
import traceback
|
||||||
|
import time
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
queue_lock = threading.Lock()
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_queued_call(func):
|
||||||
|
def f(*args, **kwargs):
|
||||||
|
with queue_lock:
|
||||||
|
res = func(*args, **kwargs)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
return f
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||||
|
def f(*args, **kwargs):
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
|
||||||
|
with queue_lock:
|
||||||
|
res = func(*args, **kwargs)
|
||||||
|
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||||
|
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
|
||||||
|
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
|
||||||
|
if run_memmon:
|
||||||
|
shared.mem_mon.monitor()
|
||||||
|
t = time.perf_counter()
|
||||||
|
|
||||||
|
try:
|
||||||
|
res = list(func(*args, **kwargs))
|
||||||
|
except Exception as e:
|
||||||
|
# When printing out our debug argument list, do not print out more than a MB of text
|
||||||
|
max_debug_str_len = 131072 # (1024*1024)/8
|
||||||
|
|
||||||
|
print("Error completing request", file=sys.stderr)
|
||||||
|
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
||||||
|
print(argStr[:max_debug_str_len], file=sys.stderr)
|
||||||
|
if len(argStr) > max_debug_str_len:
|
||||||
|
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
||||||
|
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
shared.state.job = ""
|
||||||
|
shared.state.job_count = 0
|
||||||
|
|
||||||
|
if extra_outputs_array is None:
|
||||||
|
extra_outputs_array = [None, '']
|
||||||
|
|
||||||
|
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
|
||||||
|
|
||||||
|
shared.state.skipped = False
|
||||||
|
shared.state.interrupted = False
|
||||||
|
shared.state.job_count = 0
|
||||||
|
|
||||||
|
if not add_stats:
|
||||||
|
return tuple(res)
|
||||||
|
|
||||||
|
elapsed = time.perf_counter() - t
|
||||||
|
elapsed_m = int(elapsed // 60)
|
||||||
|
elapsed_s = elapsed % 60
|
||||||
|
elapsed_text = f"{elapsed_s:.2f}s"
|
||||||
|
if elapsed_m > 0:
|
||||||
|
elapsed_text = f"{elapsed_m}m "+elapsed_text
|
||||||
|
|
||||||
|
if run_memmon:
|
||||||
|
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
|
||||||
|
active_peak = mem_stats['active_peak']
|
||||||
|
reserved_peak = mem_stats['reserved_peak']
|
||||||
|
sys_peak = mem_stats['system_peak']
|
||||||
|
sys_total = mem_stats['total']
|
||||||
|
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
|
||||||
|
|
||||||
|
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
|
||||||
|
else:
|
||||||
|
vram_html = ''
|
||||||
|
|
||||||
|
# last item is always HTML
|
||||||
|
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
|
||||||
|
|
||||||
|
return tuple(res)
|
||||||
|
|
||||||
|
return f
|
||||||
|
|
@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
|
|||||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||||
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Wrong params!')
|
raise ValueError('Wrong params!')
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
|
|||||||
elif 'params' in chkpt:
|
elif 'params' in chkpt:
|
||||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Wrong params!')
|
raise ValueError('Wrong params!')
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.main(x)
|
return self.main(x)
|
@ -36,6 +36,7 @@ def setup_model(dirname):
|
|||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
from basicsr.utils import imwrite, img2tensor, tensor2img
|
from basicsr.utils import imwrite, img2tensor, tensor2img
|
||||||
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
||||||
|
from facelib.detection.retinaface import retinaface
|
||||||
from modules.shared import cmd_opts
|
from modules.shared import cmd_opts
|
||||||
|
|
||||||
net_class = CodeFormer
|
net_class = CodeFormer
|
||||||
@ -65,14 +66,20 @@ def setup_model(dirname):
|
|||||||
net.load_state_dict(checkpoint)
|
net.load_state_dict(checkpoint)
|
||||||
net.eval()
|
net.eval()
|
||||||
|
|
||||||
|
if hasattr(retinaface, 'device'):
|
||||||
|
retinaface.device = devices.device_codeformer
|
||||||
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
||||||
|
|
||||||
self.net = net
|
self.net = net
|
||||||
self.face_helper = face_helper
|
self.face_helper = face_helper
|
||||||
self.net.to(devices.device_codeformer)
|
|
||||||
|
|
||||||
return net, face_helper
|
return net, face_helper
|
||||||
|
|
||||||
|
def send_model_to(self, device):
|
||||||
|
self.net.to(device)
|
||||||
|
self.face_helper.face_det.to(device)
|
||||||
|
self.face_helper.face_parse.to(device)
|
||||||
|
|
||||||
def restore(self, np_image, w=None):
|
def restore(self, np_image, w=None):
|
||||||
np_image = np_image[:, :, ::-1]
|
np_image = np_image[:, :, ::-1]
|
||||||
|
|
||||||
@ -82,6 +89,8 @@ def setup_model(dirname):
|
|||||||
if self.net is None or self.face_helper is None:
|
if self.net is None or self.face_helper is None:
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
|
self.send_model_to(devices.device_codeformer)
|
||||||
|
|
||||||
self.face_helper.clean_all()
|
self.face_helper.clean_all()
|
||||||
self.face_helper.read_image(np_image)
|
self.face_helper.read_image(np_image)
|
||||||
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
||||||
@ -113,8 +122,10 @@ def setup_model(dirname):
|
|||||||
if original_resolution != restored_img.shape[0:2]:
|
if original_resolution != restored_img.shape[0:2]:
|
||||||
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
|
self.face_helper.clean_all()
|
||||||
|
|
||||||
if shared.opts.face_restoration_unload:
|
if shared.opts.face_restoration_unload:
|
||||||
self.net.to(devices.cpu)
|
self.send_model_to(devices.cpu)
|
||||||
|
|
||||||
return restored_img
|
return restored_img
|
||||||
|
|
||||||
|
99
modules/deepbooru.py
Normal file
99
modules/deepbooru.py
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from modules import modelloader, paths, deepbooru_model, devices, images, shared
|
||||||
|
|
||||||
|
re_special = re.compile(r'([\\()])')
|
||||||
|
|
||||||
|
|
||||||
|
class DeepDanbooru:
|
||||||
|
def __init__(self):
|
||||||
|
self.model = None
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
if self.model is not None:
|
||||||
|
return
|
||||||
|
|
||||||
|
files = modelloader.load_models(
|
||||||
|
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
|
||||||
|
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
|
||||||
|
ext_filter=[".pt"],
|
||||||
|
download_name='model-resnet_custom_v3.pt',
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model = deepbooru_model.DeepDanbooruModel()
|
||||||
|
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
|
||||||
|
|
||||||
|
self.model.eval()
|
||||||
|
self.model.to(devices.cpu, devices.dtype)
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
self.load()
|
||||||
|
self.model.to(devices.device)
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
if not shared.opts.interrogate_keep_models_in_memory:
|
||||||
|
self.model.to(devices.cpu)
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
def tag(self, pil_image):
|
||||||
|
self.start()
|
||||||
|
res = self.tag_multi(pil_image)
|
||||||
|
self.stop()
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def tag_multi(self, pil_image, force_disable_ranks=False):
|
||||||
|
threshold = shared.opts.interrogate_deepbooru_score_threshold
|
||||||
|
use_spaces = shared.opts.deepbooru_use_spaces
|
||||||
|
use_escape = shared.opts.deepbooru_escape
|
||||||
|
alpha_sort = shared.opts.deepbooru_sort_alpha
|
||||||
|
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
|
||||||
|
|
||||||
|
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
|
||||||
|
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
|
||||||
|
|
||||||
|
with torch.no_grad(), devices.autocast():
|
||||||
|
x = torch.from_numpy(a).to(devices.device)
|
||||||
|
y = self.model(x)[0].detach().cpu().numpy()
|
||||||
|
|
||||||
|
probability_dict = {}
|
||||||
|
|
||||||
|
for tag, probability in zip(self.model.tags, y):
|
||||||
|
if probability < threshold:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if tag.startswith("rating:"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
probability_dict[tag] = probability
|
||||||
|
|
||||||
|
if alpha_sort:
|
||||||
|
tags = sorted(probability_dict)
|
||||||
|
else:
|
||||||
|
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
|
||||||
|
|
||||||
|
res = []
|
||||||
|
|
||||||
|
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
|
||||||
|
|
||||||
|
for tag in [x for x in tags if x not in filtertags]:
|
||||||
|
probability = probability_dict[tag]
|
||||||
|
tag_outformat = tag
|
||||||
|
if use_spaces:
|
||||||
|
tag_outformat = tag_outformat.replace('_', ' ')
|
||||||
|
if use_escape:
|
||||||
|
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||||
|
if include_ranks:
|
||||||
|
tag_outformat = f"({tag_outformat}:{probability:.3f})"
|
||||||
|
|
||||||
|
res.append(tag_outformat)
|
||||||
|
|
||||||
|
return ", ".join(res)
|
||||||
|
|
||||||
|
|
||||||
|
model = DeepDanbooru()
|
676
modules/deepbooru_model.py
Normal file
676
modules/deepbooru_model.py
Normal file
@ -0,0 +1,676 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
||||||
|
|
||||||
|
|
||||||
|
class DeepDanbooruModel(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(DeepDanbooruModel, self).__init__()
|
||||||
|
|
||||||
|
self.tags = []
|
||||||
|
|
||||||
|
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
|
||||||
|
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
|
||||||
|
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
||||||
|
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
|
||||||
|
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
|
||||||
|
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
|
||||||
|
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
|
||||||
|
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
|
||||||
|
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
|
||||||
|
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
|
||||||
|
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
|
||||||
|
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
|
||||||
|
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
|
||||||
|
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
||||||
|
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
|
||||||
|
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
|
||||||
|
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
|
||||||
|
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
|
||||||
|
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
|
||||||
|
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
|
||||||
|
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
|
||||||
|
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
||||||
|
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
||||||
|
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
|
||||||
|
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
|
||||||
|
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
|
||||||
|
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
|
||||||
|
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
|
||||||
|
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
|
||||||
|
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
||||||
|
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
||||||
|
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
|
||||||
|
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
|
||||||
|
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
|
||||||
|
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
|
||||||
|
|
||||||
|
def forward(self, *inputs):
|
||||||
|
t_358, = inputs
|
||||||
|
t_359 = t_358.permute(*[0, 3, 1, 2])
|
||||||
|
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
||||||
|
t_360 = self.n_Conv_0(t_359_padded)
|
||||||
|
t_361 = F.relu(t_360)
|
||||||
|
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
||||||
|
t_362 = self.n_MaxPool_0(t_361)
|
||||||
|
t_363 = self.n_Conv_1(t_362)
|
||||||
|
t_364 = self.n_Conv_2(t_362)
|
||||||
|
t_365 = F.relu(t_364)
|
||||||
|
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
|
||||||
|
t_366 = self.n_Conv_3(t_365_padded)
|
||||||
|
t_367 = F.relu(t_366)
|
||||||
|
t_368 = self.n_Conv_4(t_367)
|
||||||
|
t_369 = torch.add(t_368, t_363)
|
||||||
|
t_370 = F.relu(t_369)
|
||||||
|
t_371 = self.n_Conv_5(t_370)
|
||||||
|
t_372 = F.relu(t_371)
|
||||||
|
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
|
||||||
|
t_373 = self.n_Conv_6(t_372_padded)
|
||||||
|
t_374 = F.relu(t_373)
|
||||||
|
t_375 = self.n_Conv_7(t_374)
|
||||||
|
t_376 = torch.add(t_375, t_370)
|
||||||
|
t_377 = F.relu(t_376)
|
||||||
|
t_378 = self.n_Conv_8(t_377)
|
||||||
|
t_379 = F.relu(t_378)
|
||||||
|
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
|
||||||
|
t_380 = self.n_Conv_9(t_379_padded)
|
||||||
|
t_381 = F.relu(t_380)
|
||||||
|
t_382 = self.n_Conv_10(t_381)
|
||||||
|
t_383 = torch.add(t_382, t_377)
|
||||||
|
t_384 = F.relu(t_383)
|
||||||
|
t_385 = self.n_Conv_11(t_384)
|
||||||
|
t_386 = self.n_Conv_12(t_384)
|
||||||
|
t_387 = F.relu(t_386)
|
||||||
|
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
|
||||||
|
t_388 = self.n_Conv_13(t_387_padded)
|
||||||
|
t_389 = F.relu(t_388)
|
||||||
|
t_390 = self.n_Conv_14(t_389)
|
||||||
|
t_391 = torch.add(t_390, t_385)
|
||||||
|
t_392 = F.relu(t_391)
|
||||||
|
t_393 = self.n_Conv_15(t_392)
|
||||||
|
t_394 = F.relu(t_393)
|
||||||
|
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
|
||||||
|
t_395 = self.n_Conv_16(t_394_padded)
|
||||||
|
t_396 = F.relu(t_395)
|
||||||
|
t_397 = self.n_Conv_17(t_396)
|
||||||
|
t_398 = torch.add(t_397, t_392)
|
||||||
|
t_399 = F.relu(t_398)
|
||||||
|
t_400 = self.n_Conv_18(t_399)
|
||||||
|
t_401 = F.relu(t_400)
|
||||||
|
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
|
||||||
|
t_402 = self.n_Conv_19(t_401_padded)
|
||||||
|
t_403 = F.relu(t_402)
|
||||||
|
t_404 = self.n_Conv_20(t_403)
|
||||||
|
t_405 = torch.add(t_404, t_399)
|
||||||
|
t_406 = F.relu(t_405)
|
||||||
|
t_407 = self.n_Conv_21(t_406)
|
||||||
|
t_408 = F.relu(t_407)
|
||||||
|
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
|
||||||
|
t_409 = self.n_Conv_22(t_408_padded)
|
||||||
|
t_410 = F.relu(t_409)
|
||||||
|
t_411 = self.n_Conv_23(t_410)
|
||||||
|
t_412 = torch.add(t_411, t_406)
|
||||||
|
t_413 = F.relu(t_412)
|
||||||
|
t_414 = self.n_Conv_24(t_413)
|
||||||
|
t_415 = F.relu(t_414)
|
||||||
|
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
|
||||||
|
t_416 = self.n_Conv_25(t_415_padded)
|
||||||
|
t_417 = F.relu(t_416)
|
||||||
|
t_418 = self.n_Conv_26(t_417)
|
||||||
|
t_419 = torch.add(t_418, t_413)
|
||||||
|
t_420 = F.relu(t_419)
|
||||||
|
t_421 = self.n_Conv_27(t_420)
|
||||||
|
t_422 = F.relu(t_421)
|
||||||
|
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
|
||||||
|
t_423 = self.n_Conv_28(t_422_padded)
|
||||||
|
t_424 = F.relu(t_423)
|
||||||
|
t_425 = self.n_Conv_29(t_424)
|
||||||
|
t_426 = torch.add(t_425, t_420)
|
||||||
|
t_427 = F.relu(t_426)
|
||||||
|
t_428 = self.n_Conv_30(t_427)
|
||||||
|
t_429 = F.relu(t_428)
|
||||||
|
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
|
||||||
|
t_430 = self.n_Conv_31(t_429_padded)
|
||||||
|
t_431 = F.relu(t_430)
|
||||||
|
t_432 = self.n_Conv_32(t_431)
|
||||||
|
t_433 = torch.add(t_432, t_427)
|
||||||
|
t_434 = F.relu(t_433)
|
||||||
|
t_435 = self.n_Conv_33(t_434)
|
||||||
|
t_436 = F.relu(t_435)
|
||||||
|
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
|
||||||
|
t_437 = self.n_Conv_34(t_436_padded)
|
||||||
|
t_438 = F.relu(t_437)
|
||||||
|
t_439 = self.n_Conv_35(t_438)
|
||||||
|
t_440 = torch.add(t_439, t_434)
|
||||||
|
t_441 = F.relu(t_440)
|
||||||
|
t_442 = self.n_Conv_36(t_441)
|
||||||
|
t_443 = self.n_Conv_37(t_441)
|
||||||
|
t_444 = F.relu(t_443)
|
||||||
|
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
|
||||||
|
t_445 = self.n_Conv_38(t_444_padded)
|
||||||
|
t_446 = F.relu(t_445)
|
||||||
|
t_447 = self.n_Conv_39(t_446)
|
||||||
|
t_448 = torch.add(t_447, t_442)
|
||||||
|
t_449 = F.relu(t_448)
|
||||||
|
t_450 = self.n_Conv_40(t_449)
|
||||||
|
t_451 = F.relu(t_450)
|
||||||
|
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
|
||||||
|
t_452 = self.n_Conv_41(t_451_padded)
|
||||||
|
t_453 = F.relu(t_452)
|
||||||
|
t_454 = self.n_Conv_42(t_453)
|
||||||
|
t_455 = torch.add(t_454, t_449)
|
||||||
|
t_456 = F.relu(t_455)
|
||||||
|
t_457 = self.n_Conv_43(t_456)
|
||||||
|
t_458 = F.relu(t_457)
|
||||||
|
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
|
||||||
|
t_459 = self.n_Conv_44(t_458_padded)
|
||||||
|
t_460 = F.relu(t_459)
|
||||||
|
t_461 = self.n_Conv_45(t_460)
|
||||||
|
t_462 = torch.add(t_461, t_456)
|
||||||
|
t_463 = F.relu(t_462)
|
||||||
|
t_464 = self.n_Conv_46(t_463)
|
||||||
|
t_465 = F.relu(t_464)
|
||||||
|
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
|
||||||
|
t_466 = self.n_Conv_47(t_465_padded)
|
||||||
|
t_467 = F.relu(t_466)
|
||||||
|
t_468 = self.n_Conv_48(t_467)
|
||||||
|
t_469 = torch.add(t_468, t_463)
|
||||||
|
t_470 = F.relu(t_469)
|
||||||
|
t_471 = self.n_Conv_49(t_470)
|
||||||
|
t_472 = F.relu(t_471)
|
||||||
|
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
|
||||||
|
t_473 = self.n_Conv_50(t_472_padded)
|
||||||
|
t_474 = F.relu(t_473)
|
||||||
|
t_475 = self.n_Conv_51(t_474)
|
||||||
|
t_476 = torch.add(t_475, t_470)
|
||||||
|
t_477 = F.relu(t_476)
|
||||||
|
t_478 = self.n_Conv_52(t_477)
|
||||||
|
t_479 = F.relu(t_478)
|
||||||
|
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
|
||||||
|
t_480 = self.n_Conv_53(t_479_padded)
|
||||||
|
t_481 = F.relu(t_480)
|
||||||
|
t_482 = self.n_Conv_54(t_481)
|
||||||
|
t_483 = torch.add(t_482, t_477)
|
||||||
|
t_484 = F.relu(t_483)
|
||||||
|
t_485 = self.n_Conv_55(t_484)
|
||||||
|
t_486 = F.relu(t_485)
|
||||||
|
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
|
||||||
|
t_487 = self.n_Conv_56(t_486_padded)
|
||||||
|
t_488 = F.relu(t_487)
|
||||||
|
t_489 = self.n_Conv_57(t_488)
|
||||||
|
t_490 = torch.add(t_489, t_484)
|
||||||
|
t_491 = F.relu(t_490)
|
||||||
|
t_492 = self.n_Conv_58(t_491)
|
||||||
|
t_493 = F.relu(t_492)
|
||||||
|
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
|
||||||
|
t_494 = self.n_Conv_59(t_493_padded)
|
||||||
|
t_495 = F.relu(t_494)
|
||||||
|
t_496 = self.n_Conv_60(t_495)
|
||||||
|
t_497 = torch.add(t_496, t_491)
|
||||||
|
t_498 = F.relu(t_497)
|
||||||
|
t_499 = self.n_Conv_61(t_498)
|
||||||
|
t_500 = F.relu(t_499)
|
||||||
|
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
|
||||||
|
t_501 = self.n_Conv_62(t_500_padded)
|
||||||
|
t_502 = F.relu(t_501)
|
||||||
|
t_503 = self.n_Conv_63(t_502)
|
||||||
|
t_504 = torch.add(t_503, t_498)
|
||||||
|
t_505 = F.relu(t_504)
|
||||||
|
t_506 = self.n_Conv_64(t_505)
|
||||||
|
t_507 = F.relu(t_506)
|
||||||
|
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
|
||||||
|
t_508 = self.n_Conv_65(t_507_padded)
|
||||||
|
t_509 = F.relu(t_508)
|
||||||
|
t_510 = self.n_Conv_66(t_509)
|
||||||
|
t_511 = torch.add(t_510, t_505)
|
||||||
|
t_512 = F.relu(t_511)
|
||||||
|
t_513 = self.n_Conv_67(t_512)
|
||||||
|
t_514 = F.relu(t_513)
|
||||||
|
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
|
||||||
|
t_515 = self.n_Conv_68(t_514_padded)
|
||||||
|
t_516 = F.relu(t_515)
|
||||||
|
t_517 = self.n_Conv_69(t_516)
|
||||||
|
t_518 = torch.add(t_517, t_512)
|
||||||
|
t_519 = F.relu(t_518)
|
||||||
|
t_520 = self.n_Conv_70(t_519)
|
||||||
|
t_521 = F.relu(t_520)
|
||||||
|
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
|
||||||
|
t_522 = self.n_Conv_71(t_521_padded)
|
||||||
|
t_523 = F.relu(t_522)
|
||||||
|
t_524 = self.n_Conv_72(t_523)
|
||||||
|
t_525 = torch.add(t_524, t_519)
|
||||||
|
t_526 = F.relu(t_525)
|
||||||
|
t_527 = self.n_Conv_73(t_526)
|
||||||
|
t_528 = F.relu(t_527)
|
||||||
|
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
|
||||||
|
t_529 = self.n_Conv_74(t_528_padded)
|
||||||
|
t_530 = F.relu(t_529)
|
||||||
|
t_531 = self.n_Conv_75(t_530)
|
||||||
|
t_532 = torch.add(t_531, t_526)
|
||||||
|
t_533 = F.relu(t_532)
|
||||||
|
t_534 = self.n_Conv_76(t_533)
|
||||||
|
t_535 = F.relu(t_534)
|
||||||
|
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
|
||||||
|
t_536 = self.n_Conv_77(t_535_padded)
|
||||||
|
t_537 = F.relu(t_536)
|
||||||
|
t_538 = self.n_Conv_78(t_537)
|
||||||
|
t_539 = torch.add(t_538, t_533)
|
||||||
|
t_540 = F.relu(t_539)
|
||||||
|
t_541 = self.n_Conv_79(t_540)
|
||||||
|
t_542 = F.relu(t_541)
|
||||||
|
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
|
||||||
|
t_543 = self.n_Conv_80(t_542_padded)
|
||||||
|
t_544 = F.relu(t_543)
|
||||||
|
t_545 = self.n_Conv_81(t_544)
|
||||||
|
t_546 = torch.add(t_545, t_540)
|
||||||
|
t_547 = F.relu(t_546)
|
||||||
|
t_548 = self.n_Conv_82(t_547)
|
||||||
|
t_549 = F.relu(t_548)
|
||||||
|
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
|
||||||
|
t_550 = self.n_Conv_83(t_549_padded)
|
||||||
|
t_551 = F.relu(t_550)
|
||||||
|
t_552 = self.n_Conv_84(t_551)
|
||||||
|
t_553 = torch.add(t_552, t_547)
|
||||||
|
t_554 = F.relu(t_553)
|
||||||
|
t_555 = self.n_Conv_85(t_554)
|
||||||
|
t_556 = F.relu(t_555)
|
||||||
|
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
|
||||||
|
t_557 = self.n_Conv_86(t_556_padded)
|
||||||
|
t_558 = F.relu(t_557)
|
||||||
|
t_559 = self.n_Conv_87(t_558)
|
||||||
|
t_560 = torch.add(t_559, t_554)
|
||||||
|
t_561 = F.relu(t_560)
|
||||||
|
t_562 = self.n_Conv_88(t_561)
|
||||||
|
t_563 = F.relu(t_562)
|
||||||
|
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
|
||||||
|
t_564 = self.n_Conv_89(t_563_padded)
|
||||||
|
t_565 = F.relu(t_564)
|
||||||
|
t_566 = self.n_Conv_90(t_565)
|
||||||
|
t_567 = torch.add(t_566, t_561)
|
||||||
|
t_568 = F.relu(t_567)
|
||||||
|
t_569 = self.n_Conv_91(t_568)
|
||||||
|
t_570 = F.relu(t_569)
|
||||||
|
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
|
||||||
|
t_571 = self.n_Conv_92(t_570_padded)
|
||||||
|
t_572 = F.relu(t_571)
|
||||||
|
t_573 = self.n_Conv_93(t_572)
|
||||||
|
t_574 = torch.add(t_573, t_568)
|
||||||
|
t_575 = F.relu(t_574)
|
||||||
|
t_576 = self.n_Conv_94(t_575)
|
||||||
|
t_577 = F.relu(t_576)
|
||||||
|
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
|
||||||
|
t_578 = self.n_Conv_95(t_577_padded)
|
||||||
|
t_579 = F.relu(t_578)
|
||||||
|
t_580 = self.n_Conv_96(t_579)
|
||||||
|
t_581 = torch.add(t_580, t_575)
|
||||||
|
t_582 = F.relu(t_581)
|
||||||
|
t_583 = self.n_Conv_97(t_582)
|
||||||
|
t_584 = F.relu(t_583)
|
||||||
|
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
|
||||||
|
t_585 = self.n_Conv_98(t_584_padded)
|
||||||
|
t_586 = F.relu(t_585)
|
||||||
|
t_587 = self.n_Conv_99(t_586)
|
||||||
|
t_588 = self.n_Conv_100(t_582)
|
||||||
|
t_589 = torch.add(t_587, t_588)
|
||||||
|
t_590 = F.relu(t_589)
|
||||||
|
t_591 = self.n_Conv_101(t_590)
|
||||||
|
t_592 = F.relu(t_591)
|
||||||
|
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
|
||||||
|
t_593 = self.n_Conv_102(t_592_padded)
|
||||||
|
t_594 = F.relu(t_593)
|
||||||
|
t_595 = self.n_Conv_103(t_594)
|
||||||
|
t_596 = torch.add(t_595, t_590)
|
||||||
|
t_597 = F.relu(t_596)
|
||||||
|
t_598 = self.n_Conv_104(t_597)
|
||||||
|
t_599 = F.relu(t_598)
|
||||||
|
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
|
||||||
|
t_600 = self.n_Conv_105(t_599_padded)
|
||||||
|
t_601 = F.relu(t_600)
|
||||||
|
t_602 = self.n_Conv_106(t_601)
|
||||||
|
t_603 = torch.add(t_602, t_597)
|
||||||
|
t_604 = F.relu(t_603)
|
||||||
|
t_605 = self.n_Conv_107(t_604)
|
||||||
|
t_606 = F.relu(t_605)
|
||||||
|
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
|
||||||
|
t_607 = self.n_Conv_108(t_606_padded)
|
||||||
|
t_608 = F.relu(t_607)
|
||||||
|
t_609 = self.n_Conv_109(t_608)
|
||||||
|
t_610 = torch.add(t_609, t_604)
|
||||||
|
t_611 = F.relu(t_610)
|
||||||
|
t_612 = self.n_Conv_110(t_611)
|
||||||
|
t_613 = F.relu(t_612)
|
||||||
|
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
|
||||||
|
t_614 = self.n_Conv_111(t_613_padded)
|
||||||
|
t_615 = F.relu(t_614)
|
||||||
|
t_616 = self.n_Conv_112(t_615)
|
||||||
|
t_617 = torch.add(t_616, t_611)
|
||||||
|
t_618 = F.relu(t_617)
|
||||||
|
t_619 = self.n_Conv_113(t_618)
|
||||||
|
t_620 = F.relu(t_619)
|
||||||
|
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
|
||||||
|
t_621 = self.n_Conv_114(t_620_padded)
|
||||||
|
t_622 = F.relu(t_621)
|
||||||
|
t_623 = self.n_Conv_115(t_622)
|
||||||
|
t_624 = torch.add(t_623, t_618)
|
||||||
|
t_625 = F.relu(t_624)
|
||||||
|
t_626 = self.n_Conv_116(t_625)
|
||||||
|
t_627 = F.relu(t_626)
|
||||||
|
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
|
||||||
|
t_628 = self.n_Conv_117(t_627_padded)
|
||||||
|
t_629 = F.relu(t_628)
|
||||||
|
t_630 = self.n_Conv_118(t_629)
|
||||||
|
t_631 = torch.add(t_630, t_625)
|
||||||
|
t_632 = F.relu(t_631)
|
||||||
|
t_633 = self.n_Conv_119(t_632)
|
||||||
|
t_634 = F.relu(t_633)
|
||||||
|
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
|
||||||
|
t_635 = self.n_Conv_120(t_634_padded)
|
||||||
|
t_636 = F.relu(t_635)
|
||||||
|
t_637 = self.n_Conv_121(t_636)
|
||||||
|
t_638 = torch.add(t_637, t_632)
|
||||||
|
t_639 = F.relu(t_638)
|
||||||
|
t_640 = self.n_Conv_122(t_639)
|
||||||
|
t_641 = F.relu(t_640)
|
||||||
|
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
|
||||||
|
t_642 = self.n_Conv_123(t_641_padded)
|
||||||
|
t_643 = F.relu(t_642)
|
||||||
|
t_644 = self.n_Conv_124(t_643)
|
||||||
|
t_645 = torch.add(t_644, t_639)
|
||||||
|
t_646 = F.relu(t_645)
|
||||||
|
t_647 = self.n_Conv_125(t_646)
|
||||||
|
t_648 = F.relu(t_647)
|
||||||
|
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
|
||||||
|
t_649 = self.n_Conv_126(t_648_padded)
|
||||||
|
t_650 = F.relu(t_649)
|
||||||
|
t_651 = self.n_Conv_127(t_650)
|
||||||
|
t_652 = torch.add(t_651, t_646)
|
||||||
|
t_653 = F.relu(t_652)
|
||||||
|
t_654 = self.n_Conv_128(t_653)
|
||||||
|
t_655 = F.relu(t_654)
|
||||||
|
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
|
||||||
|
t_656 = self.n_Conv_129(t_655_padded)
|
||||||
|
t_657 = F.relu(t_656)
|
||||||
|
t_658 = self.n_Conv_130(t_657)
|
||||||
|
t_659 = torch.add(t_658, t_653)
|
||||||
|
t_660 = F.relu(t_659)
|
||||||
|
t_661 = self.n_Conv_131(t_660)
|
||||||
|
t_662 = F.relu(t_661)
|
||||||
|
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
|
||||||
|
t_663 = self.n_Conv_132(t_662_padded)
|
||||||
|
t_664 = F.relu(t_663)
|
||||||
|
t_665 = self.n_Conv_133(t_664)
|
||||||
|
t_666 = torch.add(t_665, t_660)
|
||||||
|
t_667 = F.relu(t_666)
|
||||||
|
t_668 = self.n_Conv_134(t_667)
|
||||||
|
t_669 = F.relu(t_668)
|
||||||
|
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
|
||||||
|
t_670 = self.n_Conv_135(t_669_padded)
|
||||||
|
t_671 = F.relu(t_670)
|
||||||
|
t_672 = self.n_Conv_136(t_671)
|
||||||
|
t_673 = torch.add(t_672, t_667)
|
||||||
|
t_674 = F.relu(t_673)
|
||||||
|
t_675 = self.n_Conv_137(t_674)
|
||||||
|
t_676 = F.relu(t_675)
|
||||||
|
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
|
||||||
|
t_677 = self.n_Conv_138(t_676_padded)
|
||||||
|
t_678 = F.relu(t_677)
|
||||||
|
t_679 = self.n_Conv_139(t_678)
|
||||||
|
t_680 = torch.add(t_679, t_674)
|
||||||
|
t_681 = F.relu(t_680)
|
||||||
|
t_682 = self.n_Conv_140(t_681)
|
||||||
|
t_683 = F.relu(t_682)
|
||||||
|
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
|
||||||
|
t_684 = self.n_Conv_141(t_683_padded)
|
||||||
|
t_685 = F.relu(t_684)
|
||||||
|
t_686 = self.n_Conv_142(t_685)
|
||||||
|
t_687 = torch.add(t_686, t_681)
|
||||||
|
t_688 = F.relu(t_687)
|
||||||
|
t_689 = self.n_Conv_143(t_688)
|
||||||
|
t_690 = F.relu(t_689)
|
||||||
|
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
|
||||||
|
t_691 = self.n_Conv_144(t_690_padded)
|
||||||
|
t_692 = F.relu(t_691)
|
||||||
|
t_693 = self.n_Conv_145(t_692)
|
||||||
|
t_694 = torch.add(t_693, t_688)
|
||||||
|
t_695 = F.relu(t_694)
|
||||||
|
t_696 = self.n_Conv_146(t_695)
|
||||||
|
t_697 = F.relu(t_696)
|
||||||
|
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
|
||||||
|
t_698 = self.n_Conv_147(t_697_padded)
|
||||||
|
t_699 = F.relu(t_698)
|
||||||
|
t_700 = self.n_Conv_148(t_699)
|
||||||
|
t_701 = torch.add(t_700, t_695)
|
||||||
|
t_702 = F.relu(t_701)
|
||||||
|
t_703 = self.n_Conv_149(t_702)
|
||||||
|
t_704 = F.relu(t_703)
|
||||||
|
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
|
||||||
|
t_705 = self.n_Conv_150(t_704_padded)
|
||||||
|
t_706 = F.relu(t_705)
|
||||||
|
t_707 = self.n_Conv_151(t_706)
|
||||||
|
t_708 = torch.add(t_707, t_702)
|
||||||
|
t_709 = F.relu(t_708)
|
||||||
|
t_710 = self.n_Conv_152(t_709)
|
||||||
|
t_711 = F.relu(t_710)
|
||||||
|
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
|
||||||
|
t_712 = self.n_Conv_153(t_711_padded)
|
||||||
|
t_713 = F.relu(t_712)
|
||||||
|
t_714 = self.n_Conv_154(t_713)
|
||||||
|
t_715 = torch.add(t_714, t_709)
|
||||||
|
t_716 = F.relu(t_715)
|
||||||
|
t_717 = self.n_Conv_155(t_716)
|
||||||
|
t_718 = F.relu(t_717)
|
||||||
|
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
|
||||||
|
t_719 = self.n_Conv_156(t_718_padded)
|
||||||
|
t_720 = F.relu(t_719)
|
||||||
|
t_721 = self.n_Conv_157(t_720)
|
||||||
|
t_722 = torch.add(t_721, t_716)
|
||||||
|
t_723 = F.relu(t_722)
|
||||||
|
t_724 = self.n_Conv_158(t_723)
|
||||||
|
t_725 = self.n_Conv_159(t_723)
|
||||||
|
t_726 = F.relu(t_725)
|
||||||
|
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
|
||||||
|
t_727 = self.n_Conv_160(t_726_padded)
|
||||||
|
t_728 = F.relu(t_727)
|
||||||
|
t_729 = self.n_Conv_161(t_728)
|
||||||
|
t_730 = torch.add(t_729, t_724)
|
||||||
|
t_731 = F.relu(t_730)
|
||||||
|
t_732 = self.n_Conv_162(t_731)
|
||||||
|
t_733 = F.relu(t_732)
|
||||||
|
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
|
||||||
|
t_734 = self.n_Conv_163(t_733_padded)
|
||||||
|
t_735 = F.relu(t_734)
|
||||||
|
t_736 = self.n_Conv_164(t_735)
|
||||||
|
t_737 = torch.add(t_736, t_731)
|
||||||
|
t_738 = F.relu(t_737)
|
||||||
|
t_739 = self.n_Conv_165(t_738)
|
||||||
|
t_740 = F.relu(t_739)
|
||||||
|
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
|
||||||
|
t_741 = self.n_Conv_166(t_740_padded)
|
||||||
|
t_742 = F.relu(t_741)
|
||||||
|
t_743 = self.n_Conv_167(t_742)
|
||||||
|
t_744 = torch.add(t_743, t_738)
|
||||||
|
t_745 = F.relu(t_744)
|
||||||
|
t_746 = self.n_Conv_168(t_745)
|
||||||
|
t_747 = self.n_Conv_169(t_745)
|
||||||
|
t_748 = F.relu(t_747)
|
||||||
|
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
|
||||||
|
t_749 = self.n_Conv_170(t_748_padded)
|
||||||
|
t_750 = F.relu(t_749)
|
||||||
|
t_751 = self.n_Conv_171(t_750)
|
||||||
|
t_752 = torch.add(t_751, t_746)
|
||||||
|
t_753 = F.relu(t_752)
|
||||||
|
t_754 = self.n_Conv_172(t_753)
|
||||||
|
t_755 = F.relu(t_754)
|
||||||
|
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
|
||||||
|
t_756 = self.n_Conv_173(t_755_padded)
|
||||||
|
t_757 = F.relu(t_756)
|
||||||
|
t_758 = self.n_Conv_174(t_757)
|
||||||
|
t_759 = torch.add(t_758, t_753)
|
||||||
|
t_760 = F.relu(t_759)
|
||||||
|
t_761 = self.n_Conv_175(t_760)
|
||||||
|
t_762 = F.relu(t_761)
|
||||||
|
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
|
||||||
|
t_763 = self.n_Conv_176(t_762_padded)
|
||||||
|
t_764 = F.relu(t_763)
|
||||||
|
t_765 = self.n_Conv_177(t_764)
|
||||||
|
t_766 = torch.add(t_765, t_760)
|
||||||
|
t_767 = F.relu(t_766)
|
||||||
|
t_768 = self.n_Conv_178(t_767)
|
||||||
|
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
|
||||||
|
t_770 = torch.squeeze(t_769, 3)
|
||||||
|
t_770 = torch.squeeze(t_770, 2)
|
||||||
|
t_771 = torch.sigmoid(t_770)
|
||||||
|
return t_771
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict, **kwargs):
|
||||||
|
self.tags = state_dict.get('tags', [])
|
||||||
|
|
||||||
|
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
|
||||||
|
|
@ -1,60 +1,140 @@
|
|||||||
|
import sys, os, shlex
|
||||||
|
import contextlib
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
|
|
||||||
from modules import errors
|
from modules import errors
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
has_mps = getattr(torch, 'has_mps', False)
|
|
||||||
|
|
||||||
cpu = torch.device("cpu")
|
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
|
||||||
|
# check `getattr` and try it for compatibility
|
||||||
|
def has_mps() -> bool:
|
||||||
|
if not getattr(torch, 'has_mps', False):
|
||||||
|
return False
|
||||||
|
try:
|
||||||
|
torch.zeros(1).to(torch.device("mps"))
|
||||||
|
return True
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def extract_device_id(args, name):
|
||||||
|
for x in range(len(args)):
|
||||||
|
if name in args[x]:
|
||||||
|
return args[x + 1]
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def get_cuda_device_string():
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if shared.cmd_opts.device_id is not None:
|
||||||
|
return f"cuda:{shared.cmd_opts.device_id}"
|
||||||
|
|
||||||
|
return "cuda"
|
||||||
|
|
||||||
|
|
||||||
def get_optimal_device():
|
def get_optimal_device():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
return torch.device("cuda")
|
return torch.device(get_cuda_device_string())
|
||||||
|
|
||||||
if has_mps:
|
if has_mps():
|
||||||
return torch.device("mps")
|
return torch.device("mps")
|
||||||
|
|
||||||
return cpu
|
return cpu
|
||||||
|
|
||||||
|
|
||||||
|
def get_device_for(task):
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if task in shared.cmd_opts.use_cpu:
|
||||||
|
return cpu
|
||||||
|
|
||||||
|
return get_optimal_device()
|
||||||
|
|
||||||
|
|
||||||
def torch_gc():
|
def torch_gc():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
with torch.cuda.device(get_cuda_device_string()):
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
def enable_tf32():
|
def enable_tf32():
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
|
|
||||||
|
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
|
||||||
|
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
|
||||||
|
if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
torch.backends.cudnn.allow_tf32 = True
|
torch.backends.cudnn.allow_tf32 = True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
errors.run(enable_tf32, "Enabling TF32")
|
errors.run(enable_tf32, "Enabling TF32")
|
||||||
|
|
||||||
|
cpu = torch.device("cpu")
|
||||||
device = get_optimal_device()
|
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
|
||||||
device_codeformer = cpu if has_mps else device
|
dtype = torch.float16
|
||||||
|
dtype_vae = torch.float16
|
||||||
|
|
||||||
|
|
||||||
def randn(seed, shape):
|
def randn(seed, shape):
|
||||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
|
||||||
if device.type == 'mps':
|
|
||||||
generator = torch.Generator(device=cpu)
|
|
||||||
generator.manual_seed(seed)
|
|
||||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
|
||||||
return noise
|
|
||||||
|
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
|
if device.type == 'mps':
|
||||||
|
return torch.randn(shape, device=cpu).to(device)
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
def randn_without_seed(shape):
|
def randn_without_seed(shape):
|
||||||
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
|
|
||||||
if device.type == 'mps':
|
if device.type == 'mps':
|
||||||
generator = torch.Generator(device=cpu)
|
return torch.randn(shape, device=cpu).to(device)
|
||||||
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
|
|
||||||
return noise
|
|
||||||
|
|
||||||
return torch.randn(shape, device=device)
|
return torch.randn(shape, device=device)
|
||||||
|
|
||||||
|
|
||||||
|
def autocast(disable=False):
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
if disable:
|
||||||
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
|
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
|
||||||
|
return contextlib.nullcontext()
|
||||||
|
|
||||||
|
return torch.autocast("cuda")
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||||
|
orig_tensor_to = torch.Tensor.to
|
||||||
|
def tensor_to_fix(self, *args, **kwargs):
|
||||||
|
if self.device.type != 'mps' and \
|
||||||
|
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
|
||||||
|
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
|
||||||
|
self = self.contiguous()
|
||||||
|
return orig_tensor_to(self, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
|
||||||
|
orig_layer_norm = torch.nn.functional.layer_norm
|
||||||
|
def layer_norm_fix(*args, **kwargs):
|
||||||
|
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
|
||||||
|
args = list(args)
|
||||||
|
args[0] = args[0].contiguous()
|
||||||
|
return orig_layer_norm(*args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
|
||||||
|
orig_tensor_numpy = torch.Tensor.numpy
|
||||||
|
def numpy_fix(self, *args, **kwargs):
|
||||||
|
if self.requires_grad:
|
||||||
|
self = self.detach()
|
||||||
|
return orig_tensor_numpy(self, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
||||||
|
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
|
||||||
|
torch.Tensor.to = tensor_to_fix
|
||||||
|
torch.nn.functional.layer_norm = layer_norm_fix
|
||||||
|
torch.Tensor.numpy = numpy_fix
|
||||||
|
@ -2,9 +2,30 @@ import sys
|
|||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
|
def print_error_explanation(message):
|
||||||
|
lines = message.strip().split("\n")
|
||||||
|
max_len = max([len(x) for x in lines])
|
||||||
|
|
||||||
|
print('=' * max_len, file=sys.stderr)
|
||||||
|
for line in lines:
|
||||||
|
print(line, file=sys.stderr)
|
||||||
|
print('=' * max_len, file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
def display(e: Exception, task):
|
||||||
|
print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
message = str(e)
|
||||||
|
if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
|
||||||
|
print_error_explanation("""
|
||||||
|
The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
|
||||||
|
See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
def run(code, task):
|
def run(code, task):
|
||||||
try:
|
try:
|
||||||
code()
|
code()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"{task}: {type(e).__name__}", file=sys.stderr)
|
display(task, e)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
|
@ -1,80 +0,0 @@
|
|||||||
# this file is taken from https://github.com/xinntao/ESRGAN
|
|
||||||
|
|
||||||
import functools
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
def make_layer(block, n_layers):
|
|
||||||
layers = []
|
|
||||||
for _ in range(n_layers):
|
|
||||||
layers.append(block())
|
|
||||||
return nn.Sequential(*layers)
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualDenseBlock_5C(nn.Module):
|
|
||||||
def __init__(self, nf=64, gc=32, bias=True):
|
|
||||||
super(ResidualDenseBlock_5C, self).__init__()
|
|
||||||
# gc: growth channel, i.e. intermediate channels
|
|
||||||
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
|
||||||
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
# initialization
|
|
||||||
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x1 = self.lrelu(self.conv1(x))
|
|
||||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
||||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
||||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
||||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
||||||
return x5 * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDB(nn.Module):
|
|
||||||
'''Residual in Residual Dense Block'''
|
|
||||||
|
|
||||||
def __init__(self, nf, gc=32):
|
|
||||||
super(RRDB, self).__init__()
|
|
||||||
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = self.RDB1(x)
|
|
||||||
out = self.RDB2(out)
|
|
||||||
out = self.RDB3(out)
|
|
||||||
return out * 0.2 + x
|
|
||||||
|
|
||||||
|
|
||||||
class RRDBNet(nn.Module):
|
|
||||||
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
|
|
||||||
super(RRDBNet, self).__init__()
|
|
||||||
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
|
||||||
|
|
||||||
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
||||||
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
|
|
||||||
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
#### upsampling
|
|
||||||
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
||||||
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
||||||
|
|
||||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
fea = self.conv_first(x)
|
|
||||||
trunk = self.trunk_conv(self.RRDB_trunk(fea))
|
|
||||||
fea = fea + trunk
|
|
||||||
|
|
||||||
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
|
|
||||||
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
|
||||||
|
|
||||||
return out
|
|
@ -5,79 +5,132 @@ import torch
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
import modules.esrgam_model_arch as arch
|
import modules.esrgan_model_arch as arch
|
||||||
from modules import shared, modelloader, images
|
from modules import shared, modelloader, images, devices
|
||||||
from modules.devices import has_mps
|
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
|
|
||||||
|
|
||||||
def fix_model_layers(crt_model, pretrained_net):
|
|
||||||
# this code is adapted from https://github.com/xinntao/ESRGAN
|
|
||||||
if 'conv_first.weight' in pretrained_net:
|
|
||||||
return pretrained_net
|
|
||||||
|
|
||||||
if 'model.0.weight' not in pretrained_net:
|
def mod2normal(state_dict):
|
||||||
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
if is_realesrgan:
|
if 'conv_first.weight' in state_dict:
|
||||||
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
|
crt_net = {}
|
||||||
else:
|
items = []
|
||||||
raise Exception("The file is not a ESRGAN model.")
|
for k, v in state_dict.items():
|
||||||
|
items.append(k)
|
||||||
|
|
||||||
crt_net = crt_model.state_dict()
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||||
load_net_clean = {}
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||||
for k, v in pretrained_net.items():
|
|
||||||
if k.startswith('module.'):
|
|
||||||
load_net_clean[k[7:]] = v
|
|
||||||
else:
|
|
||||||
load_net_clean[k] = v
|
|
||||||
pretrained_net = load_net_clean
|
|
||||||
|
|
||||||
tbd = []
|
for k in items.copy():
|
||||||
for k, v in crt_net.items():
|
if 'RDB' in k:
|
||||||
tbd.append(k)
|
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
||||||
|
if '.weight' in k:
|
||||||
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
||||||
|
elif '.bias' in k:
|
||||||
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
||||||
|
crt_net[ori_k] = state_dict[k]
|
||||||
|
items.remove(k)
|
||||||
|
|
||||||
# directly copy
|
crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
|
||||||
for k, v in crt_net.items():
|
crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
|
||||||
if k in pretrained_net and pretrained_net[k].size() == v.size():
|
crt_net['model.3.weight'] = state_dict['upconv1.weight']
|
||||||
crt_net[k] = pretrained_net[k]
|
crt_net['model.3.bias'] = state_dict['upconv1.bias']
|
||||||
tbd.remove(k)
|
crt_net['model.6.weight'] = state_dict['upconv2.weight']
|
||||||
|
crt_net['model.6.bias'] = state_dict['upconv2.bias']
|
||||||
|
crt_net['model.8.weight'] = state_dict['HRconv.weight']
|
||||||
|
crt_net['model.8.bias'] = state_dict['HRconv.bias']
|
||||||
|
crt_net['model.10.weight'] = state_dict['conv_last.weight']
|
||||||
|
crt_net['model.10.bias'] = state_dict['conv_last.bias']
|
||||||
|
state_dict = crt_net
|
||||||
|
return state_dict
|
||||||
|
|
||||||
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
|
|
||||||
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
|
|
||||||
|
|
||||||
for k in tbd.copy():
|
def resrgan2normal(state_dict, nb=23):
|
||||||
if 'RDB' in k:
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
|
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
||||||
if '.weight' in k:
|
re8x = 0
|
||||||
ori_k = ori_k.replace('.weight', '.0.weight')
|
crt_net = {}
|
||||||
elif '.bias' in k:
|
items = []
|
||||||
ori_k = ori_k.replace('.bias', '.0.bias')
|
for k, v in state_dict.items():
|
||||||
crt_net[k] = pretrained_net[ori_k]
|
items.append(k)
|
||||||
tbd.remove(k)
|
|
||||||
|
|
||||||
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
|
crt_net['model.0.weight'] = state_dict['conv_first.weight']
|
||||||
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
|
crt_net['model.0.bias'] = state_dict['conv_first.bias']
|
||||||
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
|
|
||||||
crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
|
for k in items.copy():
|
||||||
crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
|
if "rdb" in k:
|
||||||
crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
|
ori_k = k.replace('body.', 'model.1.sub.')
|
||||||
crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
|
ori_k = ori_k.replace('.rdb', '.RDB')
|
||||||
crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
|
if '.weight' in k:
|
||||||
crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
|
ori_k = ori_k.replace('.weight', '.0.weight')
|
||||||
crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
|
elif '.bias' in k:
|
||||||
|
ori_k = ori_k.replace('.bias', '.0.bias')
|
||||||
|
crt_net[ori_k] = state_dict[k]
|
||||||
|
items.remove(k)
|
||||||
|
|
||||||
|
crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
|
||||||
|
crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
|
||||||
|
crt_net['model.3.weight'] = state_dict['conv_up1.weight']
|
||||||
|
crt_net['model.3.bias'] = state_dict['conv_up1.bias']
|
||||||
|
crt_net['model.6.weight'] = state_dict['conv_up2.weight']
|
||||||
|
crt_net['model.6.bias'] = state_dict['conv_up2.bias']
|
||||||
|
|
||||||
|
if 'conv_up3.weight' in state_dict:
|
||||||
|
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
|
||||||
|
re8x = 3
|
||||||
|
crt_net['model.9.weight'] = state_dict['conv_up3.weight']
|
||||||
|
crt_net['model.9.bias'] = state_dict['conv_up3.bias']
|
||||||
|
|
||||||
|
crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
|
||||||
|
crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
|
||||||
|
crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
|
||||||
|
crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']
|
||||||
|
|
||||||
|
state_dict = crt_net
|
||||||
|
return state_dict
|
||||||
|
|
||||||
|
|
||||||
|
def infer_params(state_dict):
|
||||||
|
# this code is copied from https://github.com/victorca25/iNNfer
|
||||||
|
scale2x = 0
|
||||||
|
scalemin = 6
|
||||||
|
n_uplayer = 0
|
||||||
|
plus = False
|
||||||
|
|
||||||
|
for block in list(state_dict):
|
||||||
|
parts = block.split(".")
|
||||||
|
n_parts = len(parts)
|
||||||
|
if n_parts == 5 and parts[2] == "sub":
|
||||||
|
nb = int(parts[3])
|
||||||
|
elif n_parts == 3:
|
||||||
|
part_num = int(parts[1])
|
||||||
|
if (part_num > scalemin
|
||||||
|
and parts[0] == "model"
|
||||||
|
and parts[2] == "weight"):
|
||||||
|
scale2x += 1
|
||||||
|
if part_num > n_uplayer:
|
||||||
|
n_uplayer = part_num
|
||||||
|
out_nc = state_dict[block].shape[0]
|
||||||
|
if not plus and "conv1x1" in block:
|
||||||
|
plus = True
|
||||||
|
|
||||||
|
nf = state_dict["model.0.weight"].shape[0]
|
||||||
|
in_nc = state_dict["model.0.weight"].shape[1]
|
||||||
|
out_nc = out_nc
|
||||||
|
scale = 2 ** scale2x
|
||||||
|
|
||||||
|
return in_nc, out_nc, nf, nb, plus, scale
|
||||||
|
|
||||||
return crt_net
|
|
||||||
|
|
||||||
class UpscalerESRGAN(Upscaler):
|
class UpscalerESRGAN(Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
self.name = "ESRGAN"
|
self.name = "ESRGAN"
|
||||||
self.model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download"
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
|
||||||
self.model_name = "ESRGAN 4x"
|
self.model_name = "ESRGAN_4x"
|
||||||
self.scalers = []
|
self.scalers = []
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
||||||
scalers = []
|
scalers = []
|
||||||
@ -97,7 +150,7 @@ class UpscalerESRGAN(Upscaler):
|
|||||||
model = self.load_model(selected_model)
|
model = self.load_model(selected_model)
|
||||||
if model is None:
|
if model is None:
|
||||||
return img
|
return img
|
||||||
model.to(shared.device)
|
model.to(devices.device_esrgan)
|
||||||
img = esrgan_upscale(model, img)
|
img = esrgan_upscale(model, img)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
@ -112,22 +165,41 @@ class UpscalerESRGAN(Upscaler):
|
|||||||
print("Unable to load %s from %s" % (self.model_path, filename))
|
print("Unable to load %s from %s" % (self.model_path, filename))
|
||||||
return None
|
return None
|
||||||
|
|
||||||
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None)
|
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
|
||||||
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
|
||||||
|
|
||||||
pretrained_net = fix_model_layers(crt_model, pretrained_net)
|
if "params_ema" in state_dict:
|
||||||
crt_model.load_state_dict(pretrained_net)
|
state_dict = state_dict["params_ema"]
|
||||||
crt_model.eval()
|
elif "params" in state_dict:
|
||||||
|
state_dict = state_dict["params"]
|
||||||
|
num_conv = 16 if "realesr-animevideov3" in filename else 32
|
||||||
|
model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
|
||||||
|
model.load_state_dict(state_dict)
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
return crt_model
|
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
|
||||||
|
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
|
||||||
|
state_dict = resrgan2normal(state_dict, nb)
|
||||||
|
elif "conv_first.weight" in state_dict:
|
||||||
|
state_dict = mod2normal(state_dict)
|
||||||
|
elif "model.0.weight" not in state_dict:
|
||||||
|
raise Exception("The file is not a recognized ESRGAN model.")
|
||||||
|
|
||||||
|
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
|
||||||
|
|
||||||
|
model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
|
||||||
|
model.load_state_dict(state_dict)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
def upscale_without_tiling(model, img):
|
def upscale_without_tiling(model, img):
|
||||||
img = np.array(img)
|
img = np.array(img)
|
||||||
img = img[:, :, ::-1]
|
img = img[:, :, ::-1]
|
||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(shared.device)
|
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = model(img)
|
output = model(img)
|
||||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||||
|
463
modules/esrgan_model_arch.py
Normal file
463
modules/esrgan_model_arch.py
Normal file
@ -0,0 +1,463 @@
|
|||||||
|
# this file is adapted from https://github.com/victorca25/iNNfer
|
||||||
|
|
||||||
|
import math
|
||||||
|
import functools
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# RRDBNet Generator
|
||||||
|
####################
|
||||||
|
|
||||||
|
class RRDBNet(nn.Module):
|
||||||
|
def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
|
||||||
|
act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
|
||||||
|
finalact=None, gaussian_noise=False, plus=False):
|
||||||
|
super(RRDBNet, self).__init__()
|
||||||
|
n_upscale = int(math.log(upscale, 2))
|
||||||
|
if upscale == 3:
|
||||||
|
n_upscale = 1
|
||||||
|
|
||||||
|
self.resrgan_scale = 0
|
||||||
|
if in_nc % 16 == 0:
|
||||||
|
self.resrgan_scale = 1
|
||||||
|
elif in_nc != 4 and in_nc % 4 == 0:
|
||||||
|
self.resrgan_scale = 2
|
||||||
|
|
||||||
|
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
||||||
|
rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
|
norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
|
||||||
|
LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)
|
||||||
|
|
||||||
|
if upsample_mode == 'upconv':
|
||||||
|
upsample_block = upconv_block
|
||||||
|
elif upsample_mode == 'pixelshuffle':
|
||||||
|
upsample_block = pixelshuffle_block
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
|
||||||
|
if upscale == 3:
|
||||||
|
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
|
||||||
|
else:
|
||||||
|
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
|
||||||
|
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
|
||||||
|
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
||||||
|
|
||||||
|
outact = act(finalact) if finalact else None
|
||||||
|
|
||||||
|
self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
|
||||||
|
*upsampler, HR_conv0, HR_conv1, outact)
|
||||||
|
|
||||||
|
def forward(self, x, outm=None):
|
||||||
|
if self.resrgan_scale == 1:
|
||||||
|
feat = pixel_unshuffle(x, scale=4)
|
||||||
|
elif self.resrgan_scale == 2:
|
||||||
|
feat = pixel_unshuffle(x, scale=2)
|
||||||
|
else:
|
||||||
|
feat = x
|
||||||
|
|
||||||
|
return self.model(feat)
|
||||||
|
|
||||||
|
|
||||||
|
class RRDB(nn.Module):
|
||||||
|
"""
|
||||||
|
Residual in Residual Dense Block
|
||||||
|
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
|
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
|
||||||
|
spectral_norm=False, gaussian_noise=False, plus=False):
|
||||||
|
super(RRDB, self).__init__()
|
||||||
|
# This is for backwards compatibility with existing models
|
||||||
|
if nr == 3:
|
||||||
|
self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus)
|
||||||
|
else:
|
||||||
|
RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
|
||||||
|
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
|
||||||
|
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
|
||||||
|
self.RDBs = nn.Sequential(*RDB_list)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if hasattr(self, 'RDB1'):
|
||||||
|
out = self.RDB1(x)
|
||||||
|
out = self.RDB2(out)
|
||||||
|
out = self.RDB3(out)
|
||||||
|
else:
|
||||||
|
out = self.RDBs(x)
|
||||||
|
return out * 0.2 + x
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualDenseBlock_5C(nn.Module):
|
||||||
|
"""
|
||||||
|
Residual Dense Block
|
||||||
|
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
||||||
|
Modified options that can be used:
|
||||||
|
- "Partial Convolution based Padding" arXiv:1811.11718
|
||||||
|
- "Spectral normalization" arXiv:1802.05957
|
||||||
|
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
||||||
|
{Rakotonirina} and A. {Rasoanaivo}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
|
||||||
|
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
|
||||||
|
spectral_norm=False, gaussian_noise=False, plus=False):
|
||||||
|
super(ResidualDenseBlock_5C, self).__init__()
|
||||||
|
|
||||||
|
self.noise = GaussianNoise() if gaussian_noise else None
|
||||||
|
self.conv1x1 = conv1x1(nf, gc) if plus else None
|
||||||
|
|
||||||
|
self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
if mode == 'CNA':
|
||||||
|
last_act = None
|
||||||
|
else:
|
||||||
|
last_act = act_type
|
||||||
|
self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
|
||||||
|
norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
|
||||||
|
spectral_norm=spectral_norm)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x1 = self.conv1(x)
|
||||||
|
x2 = self.conv2(torch.cat((x, x1), 1))
|
||||||
|
if self.conv1x1:
|
||||||
|
x2 = x2 + self.conv1x1(x)
|
||||||
|
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
||||||
|
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
||||||
|
if self.conv1x1:
|
||||||
|
x4 = x4 + x2
|
||||||
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
||||||
|
if self.noise:
|
||||||
|
return self.noise(x5.mul(0.2) + x)
|
||||||
|
else:
|
||||||
|
return x5 * 0.2 + x
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# ESRGANplus
|
||||||
|
####################
|
||||||
|
|
||||||
|
class GaussianNoise(nn.Module):
|
||||||
|
def __init__(self, sigma=0.1, is_relative_detach=False):
|
||||||
|
super().__init__()
|
||||||
|
self.sigma = sigma
|
||||||
|
self.is_relative_detach = is_relative_detach
|
||||||
|
self.noise = torch.tensor(0, dtype=torch.float)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.training and self.sigma != 0:
|
||||||
|
self.noise = self.noise.to(x.device)
|
||||||
|
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
|
||||||
|
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
|
||||||
|
x = x + sampled_noise
|
||||||
|
return x
|
||||||
|
|
||||||
|
def conv1x1(in_planes, out_planes, stride=1):
|
||||||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# SRVGGNetCompact
|
||||||
|
####################
|
||||||
|
|
||||||
|
class SRVGGNetCompact(nn.Module):
|
||||||
|
"""A compact VGG-style network structure for super-resolution.
|
||||||
|
This class is copied from https://github.com/xinntao/Real-ESRGAN
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
|
||||||
|
super(SRVGGNetCompact, self).__init__()
|
||||||
|
self.num_in_ch = num_in_ch
|
||||||
|
self.num_out_ch = num_out_ch
|
||||||
|
self.num_feat = num_feat
|
||||||
|
self.num_conv = num_conv
|
||||||
|
self.upscale = upscale
|
||||||
|
self.act_type = act_type
|
||||||
|
|
||||||
|
self.body = nn.ModuleList()
|
||||||
|
# the first conv
|
||||||
|
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
||||||
|
# the first activation
|
||||||
|
if act_type == 'relu':
|
||||||
|
activation = nn.ReLU(inplace=True)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
activation = nn.PReLU(num_parameters=num_feat)
|
||||||
|
elif act_type == 'leakyrelu':
|
||||||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||||
|
self.body.append(activation)
|
||||||
|
|
||||||
|
# the body structure
|
||||||
|
for _ in range(num_conv):
|
||||||
|
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
||||||
|
# activation
|
||||||
|
if act_type == 'relu':
|
||||||
|
activation = nn.ReLU(inplace=True)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
activation = nn.PReLU(num_parameters=num_feat)
|
||||||
|
elif act_type == 'leakyrelu':
|
||||||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||||||
|
self.body.append(activation)
|
||||||
|
|
||||||
|
# the last conv
|
||||||
|
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
||||||
|
# upsample
|
||||||
|
self.upsampler = nn.PixelShuffle(upscale)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = x
|
||||||
|
for i in range(0, len(self.body)):
|
||||||
|
out = self.body[i](out)
|
||||||
|
|
||||||
|
out = self.upsampler(out)
|
||||||
|
# add the nearest upsampled image, so that the network learns the residual
|
||||||
|
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
|
||||||
|
out += base
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Upsampler
|
||||||
|
####################
|
||||||
|
|
||||||
|
class Upsample(nn.Module):
|
||||||
|
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
|
||||||
|
The input data is assumed to be of the form
|
||||||
|
`minibatch x channels x [optional depth] x [optional height] x width`.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
||||||
|
super(Upsample, self).__init__()
|
||||||
|
if isinstance(scale_factor, tuple):
|
||||||
|
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
||||||
|
else:
|
||||||
|
self.scale_factor = float(scale_factor) if scale_factor else None
|
||||||
|
self.mode = mode
|
||||||
|
self.size = size
|
||||||
|
self.align_corners = align_corners
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
if self.scale_factor is not None:
|
||||||
|
info = 'scale_factor=' + str(self.scale_factor)
|
||||||
|
else:
|
||||||
|
info = 'size=' + str(self.size)
|
||||||
|
info += ', mode=' + self.mode
|
||||||
|
return info
|
||||||
|
|
||||||
|
|
||||||
|
def pixel_unshuffle(x, scale):
|
||||||
|
""" Pixel unshuffle.
|
||||||
|
Args:
|
||||||
|
x (Tensor): Input feature with shape (b, c, hh, hw).
|
||||||
|
scale (int): Downsample ratio.
|
||||||
|
Returns:
|
||||||
|
Tensor: the pixel unshuffled feature.
|
||||||
|
"""
|
||||||
|
b, c, hh, hw = x.size()
|
||||||
|
out_channel = c * (scale**2)
|
||||||
|
assert hh % scale == 0 and hw % scale == 0
|
||||||
|
h = hh // scale
|
||||||
|
w = hw // scale
|
||||||
|
x_view = x.view(b, c, h, scale, w, scale)
|
||||||
|
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
||||||
|
|
||||||
|
|
||||||
|
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
|
||||||
|
"""
|
||||||
|
Pixel shuffle layer
|
||||||
|
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
|
||||||
|
Neural Network, CVPR17)
|
||||||
|
"""
|
||||||
|
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
|
||||||
|
pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
|
||||||
|
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
||||||
|
|
||||||
|
n = norm(norm_type, out_nc) if norm_type else None
|
||||||
|
a = act(act_type) if act_type else None
|
||||||
|
return sequential(conv, pixel_shuffle, n, a)
|
||||||
|
|
||||||
|
|
||||||
|
def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
|
||||||
|
""" Upconv layer """
|
||||||
|
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
|
||||||
|
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
|
||||||
|
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
|
||||||
|
pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
|
||||||
|
return sequential(upsample, conv)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Basic blocks
|
||||||
|
####################
|
||||||
|
|
||||||
|
|
||||||
|
def make_layer(basic_block, num_basic_block, **kwarg):
|
||||||
|
"""Make layers by stacking the same blocks.
|
||||||
|
Args:
|
||||||
|
basic_block (nn.module): nn.module class for basic block. (block)
|
||||||
|
num_basic_block (int): number of blocks. (n_layers)
|
||||||
|
Returns:
|
||||||
|
nn.Sequential: Stacked blocks in nn.Sequential.
|
||||||
|
"""
|
||||||
|
layers = []
|
||||||
|
for _ in range(num_basic_block):
|
||||||
|
layers.append(basic_block(**kwarg))
|
||||||
|
return nn.Sequential(*layers)
|
||||||
|
|
||||||
|
|
||||||
|
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
|
||||||
|
""" activation helper """
|
||||||
|
act_type = act_type.lower()
|
||||||
|
if act_type == 'relu':
|
||||||
|
layer = nn.ReLU(inplace)
|
||||||
|
elif act_type in ('leakyrelu', 'lrelu'):
|
||||||
|
layer = nn.LeakyReLU(neg_slope, inplace)
|
||||||
|
elif act_type == 'prelu':
|
||||||
|
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
||||||
|
elif act_type == 'tanh': # [-1, 1] range output
|
||||||
|
layer = nn.Tanh()
|
||||||
|
elif act_type == 'sigmoid': # [0, 1] range output
|
||||||
|
layer = nn.Sigmoid()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
class Identity(nn.Module):
|
||||||
|
def __init__(self, *kwargs):
|
||||||
|
super(Identity, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x, *kwargs):
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def norm(norm_type, nc):
|
||||||
|
""" Return a normalization layer """
|
||||||
|
norm_type = norm_type.lower()
|
||||||
|
if norm_type == 'batch':
|
||||||
|
layer = nn.BatchNorm2d(nc, affine=True)
|
||||||
|
elif norm_type == 'instance':
|
||||||
|
layer = nn.InstanceNorm2d(nc, affine=False)
|
||||||
|
elif norm_type == 'none':
|
||||||
|
def norm_layer(x): return Identity()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
def pad(pad_type, padding):
|
||||||
|
""" padding layer helper """
|
||||||
|
pad_type = pad_type.lower()
|
||||||
|
if padding == 0:
|
||||||
|
return None
|
||||||
|
if pad_type == 'reflect':
|
||||||
|
layer = nn.ReflectionPad2d(padding)
|
||||||
|
elif pad_type == 'replicate':
|
||||||
|
layer = nn.ReplicationPad2d(padding)
|
||||||
|
elif pad_type == 'zero':
|
||||||
|
layer = nn.ZeroPad2d(padding)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
|
||||||
|
return layer
|
||||||
|
|
||||||
|
|
||||||
|
def get_valid_padding(kernel_size, dilation):
|
||||||
|
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
|
||||||
|
padding = (kernel_size - 1) // 2
|
||||||
|
return padding
|
||||||
|
|
||||||
|
|
||||||
|
class ShortcutBlock(nn.Module):
|
||||||
|
""" Elementwise sum the output of a submodule to its input """
|
||||||
|
def __init__(self, submodule):
|
||||||
|
super(ShortcutBlock, self).__init__()
|
||||||
|
self.sub = submodule
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
output = x + self.sub(x)
|
||||||
|
return output
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')
|
||||||
|
|
||||||
|
|
||||||
|
def sequential(*args):
|
||||||
|
""" Flatten Sequential. It unwraps nn.Sequential. """
|
||||||
|
if len(args) == 1:
|
||||||
|
if isinstance(args[0], OrderedDict):
|
||||||
|
raise NotImplementedError('sequential does not support OrderedDict input.')
|
||||||
|
return args[0] # No sequential is needed.
|
||||||
|
modules = []
|
||||||
|
for module in args:
|
||||||
|
if isinstance(module, nn.Sequential):
|
||||||
|
for submodule in module.children():
|
||||||
|
modules.append(submodule)
|
||||||
|
elif isinstance(module, nn.Module):
|
||||||
|
modules.append(module)
|
||||||
|
return nn.Sequential(*modules)
|
||||||
|
|
||||||
|
|
||||||
|
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
|
||||||
|
pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
|
||||||
|
spectral_norm=False):
|
||||||
|
""" Conv layer with padding, normalization, activation """
|
||||||
|
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode)
|
||||||
|
padding = get_valid_padding(kernel_size, dilation)
|
||||||
|
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
|
||||||
|
padding = padding if pad_type == 'zero' else 0
|
||||||
|
|
||||||
|
if convtype=='PartialConv2D':
|
||||||
|
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
elif convtype=='DeformConv2D':
|
||||||
|
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
elif convtype=='Conv3D':
|
||||||
|
c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
else:
|
||||||
|
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
|
dilation=dilation, bias=bias, groups=groups)
|
||||||
|
|
||||||
|
if spectral_norm:
|
||||||
|
c = nn.utils.spectral_norm(c)
|
||||||
|
|
||||||
|
a = act(act_type) if act_type else None
|
||||||
|
if 'CNA' in mode:
|
||||||
|
n = norm(norm_type, out_nc) if norm_type else None
|
||||||
|
return sequential(p, c, n, a)
|
||||||
|
elif mode == 'NAC':
|
||||||
|
if norm_type is None and act_type is not None:
|
||||||
|
a = act(act_type, inplace=False)
|
||||||
|
n = norm(norm_type, in_nc) if norm_type else None
|
||||||
|
return sequential(n, a, p, c)
|
99
modules/extensions.py
Normal file
99
modules/extensions.py
Normal file
@ -0,0 +1,99 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import git
|
||||||
|
|
||||||
|
from modules import paths, shared
|
||||||
|
|
||||||
|
extensions = []
|
||||||
|
extensions_dir = os.path.join(paths.script_path, "extensions")
|
||||||
|
extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
|
||||||
|
|
||||||
|
|
||||||
|
def active():
|
||||||
|
return [x for x in extensions if x.enabled]
|
||||||
|
|
||||||
|
|
||||||
|
class Extension:
|
||||||
|
def __init__(self, name, path, enabled=True, is_builtin=False):
|
||||||
|
self.name = name
|
||||||
|
self.path = path
|
||||||
|
self.enabled = enabled
|
||||||
|
self.status = ''
|
||||||
|
self.can_update = False
|
||||||
|
self.is_builtin = is_builtin
|
||||||
|
|
||||||
|
repo = None
|
||||||
|
try:
|
||||||
|
if os.path.exists(os.path.join(path, ".git")):
|
||||||
|
repo = git.Repo(path)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error reading github repository info from {path}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
if repo is None or repo.bare:
|
||||||
|
self.remote = None
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
self.remote = next(repo.remote().urls, None)
|
||||||
|
self.status = 'unknown'
|
||||||
|
except Exception:
|
||||||
|
self.remote = None
|
||||||
|
|
||||||
|
def list_files(self, subdir, extension):
|
||||||
|
from modules import scripts
|
||||||
|
|
||||||
|
dirpath = os.path.join(self.path, subdir)
|
||||||
|
if not os.path.isdir(dirpath):
|
||||||
|
return []
|
||||||
|
|
||||||
|
res = []
|
||||||
|
for filename in sorted(os.listdir(dirpath)):
|
||||||
|
res.append(scripts.ScriptFile(self.path, filename, os.path.join(dirpath, filename)))
|
||||||
|
|
||||||
|
res = [x for x in res if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def check_updates(self):
|
||||||
|
repo = git.Repo(self.path)
|
||||||
|
for fetch in repo.remote().fetch("--dry-run"):
|
||||||
|
if fetch.flags != fetch.HEAD_UPTODATE:
|
||||||
|
self.can_update = True
|
||||||
|
self.status = "behind"
|
||||||
|
return
|
||||||
|
|
||||||
|
self.can_update = False
|
||||||
|
self.status = "latest"
|
||||||
|
|
||||||
|
def fetch_and_reset_hard(self):
|
||||||
|
repo = git.Repo(self.path)
|
||||||
|
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
|
||||||
|
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
|
||||||
|
repo.git.fetch('--all')
|
||||||
|
repo.git.reset('--hard', 'origin')
|
||||||
|
|
||||||
|
|
||||||
|
def list_extensions():
|
||||||
|
extensions.clear()
|
||||||
|
|
||||||
|
if not os.path.isdir(extensions_dir):
|
||||||
|
return
|
||||||
|
|
||||||
|
paths = []
|
||||||
|
for dirname in [extensions_dir, extensions_builtin_dir]:
|
||||||
|
if not os.path.isdir(dirname):
|
||||||
|
return
|
||||||
|
|
||||||
|
for extension_dirname in sorted(os.listdir(dirname)):
|
||||||
|
path = os.path.join(dirname, extension_dirname)
|
||||||
|
if not os.path.isdir(path):
|
||||||
|
continue
|
||||||
|
|
||||||
|
paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
|
||||||
|
|
||||||
|
for dirname, path, is_builtin in paths:
|
||||||
|
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
|
||||||
|
extensions.append(extension)
|
||||||
|
|
@ -1,4 +1,8 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
import math
|
||||||
import os
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
@ -6,7 +10,11 @@ from PIL import Image
|
|||||||
import torch
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
from modules import processing, shared, images, devices, sd_models
|
from typing import Callable, List, OrderedDict, Tuple
|
||||||
|
from functools import partial
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
from modules import processing, shared, images, devices, sd_models, sd_samplers
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
import modules.gfpgan_model
|
import modules.gfpgan_model
|
||||||
from modules.ui import plaintext_to_html
|
from modules.ui import plaintext_to_html
|
||||||
@ -14,118 +22,217 @@ import modules.codeformer_model
|
|||||||
import piexif
|
import piexif
|
||||||
import piexif.helper
|
import piexif.helper
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import safetensors.torch
|
||||||
|
|
||||||
|
class LruCache(OrderedDict):
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class Key:
|
||||||
|
image_hash: int
|
||||||
|
info_hash: int
|
||||||
|
args_hash: int
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Value:
|
||||||
|
image: Image.Image
|
||||||
|
info: str
|
||||||
|
|
||||||
|
def __init__(self, max_size: int = 5, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self._max_size = max_size
|
||||||
|
|
||||||
|
def get(self, key: LruCache.Key) -> LruCache.Value:
|
||||||
|
ret = super().get(key)
|
||||||
|
if ret is not None:
|
||||||
|
self.move_to_end(key) # Move to end of eviction list
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
|
||||||
|
self[key] = value
|
||||||
|
while len(self) > self._max_size:
|
||||||
|
self.popitem(last=False)
|
||||||
|
|
||||||
|
|
||||||
cached_images = {}
|
cached_images: LruCache = LruCache(max_size=5)
|
||||||
|
|
||||||
|
|
||||||
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'extras'
|
||||||
|
|
||||||
imageArr = []
|
imageArr = []
|
||||||
# Also keep track of original file names
|
# Also keep track of original file names
|
||||||
imageNameArr = []
|
imageNameArr = []
|
||||||
|
outputs = []
|
||||||
|
|
||||||
if extras_mode == 1:
|
if extras_mode == 1:
|
||||||
#convert file to pillow image
|
#convert file to pillow image
|
||||||
for img in image_folder:
|
for img in image_folder:
|
||||||
image = Image.fromarray(np.array(Image.open(img)))
|
image = Image.open(img)
|
||||||
imageArr.append(image)
|
imageArr.append(image)
|
||||||
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
||||||
|
elif extras_mode == 2:
|
||||||
|
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
|
||||||
|
|
||||||
|
if input_dir == '':
|
||||||
|
return outputs, "Please select an input directory.", ''
|
||||||
|
image_list = shared.listfiles(input_dir)
|
||||||
|
for img in image_list:
|
||||||
|
try:
|
||||||
|
image = Image.open(img)
|
||||||
|
except Exception:
|
||||||
|
continue
|
||||||
|
imageArr.append(image)
|
||||||
|
imageNameArr.append(img)
|
||||||
else:
|
else:
|
||||||
imageArr.append(image)
|
imageArr.append(image)
|
||||||
imageNameArr.append(None)
|
imageNameArr.append(None)
|
||||||
|
|
||||||
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
if extras_mode == 2 and output_dir != '':
|
||||||
|
outpath = output_dir
|
||||||
|
else:
|
||||||
|
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
||||||
|
|
||||||
|
# Extra operation definitions
|
||||||
|
|
||||||
|
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
shared.state.job = 'extras-gfpgan'
|
||||||
|
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
if gfpgan_visibility < 1.0:
|
||||||
|
res = Image.blend(image, res, gfpgan_visibility)
|
||||||
|
|
||||||
|
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
||||||
|
return (res, info)
|
||||||
|
|
||||||
|
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
shared.state.job = 'extras-codeformer'
|
||||||
|
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
if codeformer_visibility < 1.0:
|
||||||
|
res = Image.blend(image, res, codeformer_visibility)
|
||||||
|
|
||||||
|
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||||
|
return (res, info)
|
||||||
|
|
||||||
|
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||||
|
shared.state.job = 'extras-upscale'
|
||||||
|
upscaler = shared.sd_upscalers[scaler_index]
|
||||||
|
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||||
|
if mode == 1 and crop:
|
||||||
|
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||||
|
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
|
||||||
|
res = cropped
|
||||||
|
return res
|
||||||
|
|
||||||
|
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
|
||||||
|
nonlocal upscaling_resize
|
||||||
|
if resize_mode == 1:
|
||||||
|
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||||
|
crop_info = " (crop)" if upscaling_crop else ""
|
||||||
|
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||||
|
return (image, info)
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class UpscaleParams:
|
||||||
|
upscaler_idx: int
|
||||||
|
blend_alpha: float
|
||||||
|
|
||||||
|
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
blended_result: Image.Image = None
|
||||||
|
image_hash: str = hash(np.array(image.getdata()).tobytes())
|
||||||
|
for upscaler in params:
|
||||||
|
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
|
||||||
|
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||||
|
cache_key = LruCache.Key(image_hash=image_hash,
|
||||||
|
info_hash=hash(info),
|
||||||
|
args_hash=hash(upscale_args))
|
||||||
|
cached_entry = cached_images.get(cache_key)
|
||||||
|
if cached_entry is None:
|
||||||
|
res = upscale(image, *upscale_args)
|
||||||
|
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
|
||||||
|
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
|
||||||
|
else:
|
||||||
|
res, info = cached_entry.image, cached_entry.info
|
||||||
|
|
||||||
|
if blended_result is None:
|
||||||
|
blended_result = res
|
||||||
|
else:
|
||||||
|
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
|
||||||
|
return (blended_result, info)
|
||||||
|
|
||||||
|
# Build a list of operations to run
|
||||||
|
facefix_ops: List[Callable] = []
|
||||||
|
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
|
||||||
|
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
|
||||||
|
|
||||||
|
upscale_ops: List[Callable] = []
|
||||||
|
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
|
||||||
|
|
||||||
|
if upscaling_resize != 0:
|
||||||
|
step_params: List[UpscaleParams] = []
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
|
||||||
|
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
|
||||||
|
|
||||||
|
upscale_ops.append(partial(run_upscalers_blend, step_params))
|
||||||
|
|
||||||
|
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
|
||||||
|
|
||||||
outputs = []
|
|
||||||
for image, image_name in zip(imageArr, imageNameArr):
|
for image, image_name in zip(imageArr, imageNameArr):
|
||||||
if image is None:
|
if image is None:
|
||||||
return outputs, "Please select an input image.", ''
|
return outputs, "Please select an input image.", ''
|
||||||
|
|
||||||
|
shared.state.textinfo = f'Processing image {image_name}'
|
||||||
|
|
||||||
existing_pnginfo = image.info or {}
|
existing_pnginfo = image.info or {}
|
||||||
|
|
||||||
image = image.convert("RGB")
|
image = image.convert("RGB")
|
||||||
info = ""
|
info = ""
|
||||||
|
# Run each operation on each image
|
||||||
|
for op in extras_ops:
|
||||||
|
image, info = op(image, info)
|
||||||
|
|
||||||
if gfpgan_visibility > 0:
|
if opts.use_original_name_batch and image_name is not None:
|
||||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
basename = os.path.splitext(os.path.basename(image_name))[0]
|
||||||
res = Image.fromarray(restored_img)
|
else:
|
||||||
|
basename = ''
|
||||||
|
|
||||||
if gfpgan_visibility < 1.0:
|
if opts.enable_pnginfo: # append info before save
|
||||||
res = Image.blend(image, res, gfpgan_visibility)
|
image.info = existing_pnginfo
|
||||||
|
image.info["extras"] = info
|
||||||
|
|
||||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
if save_output:
|
||||||
image = res
|
# Add upscaler name as a suffix.
|
||||||
|
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
||||||
|
# Add second upscaler if applicable.
|
||||||
|
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
|
||||||
|
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
|
||||||
|
|
||||||
if codeformer_visibility > 0:
|
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
||||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if codeformer_visibility < 1.0:
|
if extras_mode != 2 or show_extras_results :
|
||||||
res = Image.blend(image, res, codeformer_visibility)
|
outputs.append(image)
|
||||||
|
|
||||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
devices.torch_gc()
|
||||||
image = res
|
|
||||||
|
|
||||||
if upscaling_resize != 1.0:
|
|
||||||
def upscale(image, scaler_index, resize):
|
|
||||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
|
||||||
pixels = tuple(np.array(small).flatten().tolist())
|
|
||||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
|
|
||||||
|
|
||||||
c = cached_images.get(key)
|
|
||||||
if c is None:
|
|
||||||
upscaler = shared.sd_upscalers[scaler_index]
|
|
||||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
|
||||||
cached_images[key] = c
|
|
||||||
|
|
||||||
return c
|
|
||||||
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
|
||||||
res = upscale(image, extras_upscaler_1, upscaling_resize)
|
|
||||||
|
|
||||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
|
||||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
|
||||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
|
||||||
|
|
||||||
image = res
|
|
||||||
|
|
||||||
while len(cached_images) > 2:
|
|
||||||
del cached_images[next(iter(cached_images.keys()))]
|
|
||||||
|
|
||||||
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
|
||||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
|
|
||||||
forced_filename=image_name if opts.use_original_name_batch else None)
|
|
||||||
|
|
||||||
outputs.append(image)
|
|
||||||
|
|
||||||
return outputs, plaintext_to_html(info), ''
|
return outputs, plaintext_to_html(info), ''
|
||||||
|
|
||||||
|
def clear_cache():
|
||||||
|
cached_images.clear()
|
||||||
|
|
||||||
|
|
||||||
def run_pnginfo(image):
|
def run_pnginfo(image):
|
||||||
if image is None:
|
if image is None:
|
||||||
return '', '', ''
|
return '', '', ''
|
||||||
|
|
||||||
items = image.info
|
geninfo, items = images.read_info_from_image(image)
|
||||||
geninfo = ''
|
items = {**{'parameters': geninfo}, **items}
|
||||||
|
|
||||||
if "exif" in image.info:
|
|
||||||
exif = piexif.load(image.info["exif"])
|
|
||||||
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
|
||||||
try:
|
|
||||||
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
|
||||||
except ValueError:
|
|
||||||
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
|
||||||
|
|
||||||
items['exif comment'] = exif_comment
|
|
||||||
geninfo = exif_comment
|
|
||||||
|
|
||||||
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
|
||||||
'loop', 'background', 'timestamp', 'duration']:
|
|
||||||
items.pop(field, None)
|
|
||||||
|
|
||||||
geninfo = items.get('parameters', geninfo)
|
|
||||||
|
|
||||||
info = ''
|
info = ''
|
||||||
for key, text in items.items():
|
for key, text in items.items():
|
||||||
@ -143,64 +250,116 @@ def run_pnginfo(image):
|
|||||||
return '', geninfo, info
|
return '', geninfo, info
|
||||||
|
|
||||||
|
|
||||||
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name):
|
def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
|
||||||
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
|
shared.state.begin()
|
||||||
|
shared.state.job = 'model-merge'
|
||||||
|
|
||||||
def weighted_sum(theta0, theta1, alpha):
|
def weighted_sum(theta0, theta1, alpha):
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||||
|
|
||||||
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
def get_difference(theta1, theta2):
|
||||||
def sigmoid(theta0, theta1, alpha):
|
return theta1 - theta2
|
||||||
alpha = alpha * alpha * (3 - (2 * alpha))
|
|
||||||
return theta0 + ((theta1 - theta0) * alpha)
|
|
||||||
|
|
||||||
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
def add_difference(theta0, theta1_2_diff, alpha):
|
||||||
def inv_sigmoid(theta0, theta1, alpha):
|
return theta0 + (alpha * theta1_2_diff)
|
||||||
import math
|
|
||||||
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
|
||||||
return theta0 + ((theta1 - theta0) * alpha)
|
|
||||||
|
|
||||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
||||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
|
||||||
|
tertiary_model_info = sd_models.checkpoints_list.get(tertiary_model_name, None)
|
||||||
print(f"Loading {primary_model_info.filename}...")
|
result_is_inpainting_model = False
|
||||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
|
||||||
|
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
|
||||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
|
||||||
|
|
||||||
theta_0 = primary_model['state_dict']
|
|
||||||
theta_1 = secondary_model['state_dict']
|
|
||||||
|
|
||||||
theta_funcs = {
|
theta_funcs = {
|
||||||
"Weighted Sum": weighted_sum,
|
"Weighted sum": (None, weighted_sum),
|
||||||
"Sigmoid": sigmoid,
|
"Add difference": (get_difference, add_difference),
|
||||||
"Inverse Sigmoid": inv_sigmoid,
|
|
||||||
}
|
}
|
||||||
theta_func = theta_funcs[interp_method]
|
theta_func1, theta_func2 = theta_funcs[interp_method]
|
||||||
|
|
||||||
|
if theta_func1 and not tertiary_model_info:
|
||||||
|
shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
|
||||||
|
shared.state.end()
|
||||||
|
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
|
||||||
|
print(f"Loading {secondary_model_info.filename}...")
|
||||||
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
if theta_func1:
|
||||||
|
print(f"Loading {tertiary_model_info.filename}...")
|
||||||
|
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
for key in tqdm.tqdm(theta_1.keys()):
|
||||||
|
if 'model' in key:
|
||||||
|
if key in theta_2:
|
||||||
|
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
|
||||||
|
theta_1[key] = theta_func1(theta_1[key], t2)
|
||||||
|
else:
|
||||||
|
theta_1[key] = torch.zeros_like(theta_1[key])
|
||||||
|
del theta_2
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
|
||||||
|
print(f"Loading {primary_model_info.filename}...")
|
||||||
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
|
print("Merging...")
|
||||||
|
|
||||||
print(f"Merging...")
|
|
||||||
for key in tqdm.tqdm(theta_0.keys()):
|
for key in tqdm.tqdm(theta_0.keys()):
|
||||||
if 'model' in key and key in theta_1:
|
if 'model' in key and key in theta_1:
|
||||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
a = theta_0[key]
|
||||||
|
b = theta_1[key]
|
||||||
|
|
||||||
|
shared.state.textinfo = f'Merging layer {key}'
|
||||||
|
# this enables merging an inpainting model (A) with another one (B);
|
||||||
|
# where normal model would have 4 channels, for latenst space, inpainting model would
|
||||||
|
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
||||||
|
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
|
||||||
|
if a.shape[1] == 4 and b.shape[1] == 9:
|
||||||
|
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
|
||||||
|
|
||||||
|
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
|
||||||
|
|
||||||
|
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
||||||
|
result_is_inpainting_model = True
|
||||||
|
else:
|
||||||
|
theta_0[key] = theta_func2(a, b, multiplier)
|
||||||
|
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
theta_0[key] = theta_0[key].half()
|
theta_0[key] = theta_0[key].half()
|
||||||
|
|
||||||
|
# I believe this part should be discarded, but I'll leave it for now until I am sure
|
||||||
for key in theta_1.keys():
|
for key in theta_1.keys():
|
||||||
if 'model' in key and key not in theta_0:
|
if 'model' in key and key not in theta_0:
|
||||||
theta_0[key] = theta_1[key]
|
theta_0[key] = theta_1[key]
|
||||||
if save_as_half:
|
if save_as_half:
|
||||||
theta_0[key] = theta_0[key].half()
|
theta_0[key] = theta_0[key].half()
|
||||||
|
del theta_1
|
||||||
|
|
||||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||||
|
|
||||||
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
filename = \
|
||||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + \
|
||||||
|
secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + \
|
||||||
|
interp_method.replace(" ", "_") + \
|
||||||
|
'-merged.' + \
|
||||||
|
("inpainting." if result_is_inpainting_model else "") + \
|
||||||
|
checkpoint_format
|
||||||
|
|
||||||
|
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
|
||||||
|
|
||||||
output_modelname = os.path.join(ckpt_dir, filename)
|
output_modelname = os.path.join(ckpt_dir, filename)
|
||||||
|
|
||||||
|
shared.state.textinfo = f"Saving to {output_modelname}..."
|
||||||
print(f"Saving to {output_modelname}...")
|
print(f"Saving to {output_modelname}...")
|
||||||
torch.save(primary_model, output_modelname)
|
|
||||||
|
_, extension = os.path.splitext(output_modelname)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(theta_0, output_modelname)
|
||||||
|
|
||||||
sd_models.list_models()
|
sd_models.list_models()
|
||||||
|
|
||||||
print(f"Checkpoint saved.")
|
print("Checkpoint saved.")
|
||||||
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)]
|
shared.state.textinfo = "Checkpoint saved to " + output_modelname
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
|
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
|
||||||
|
@ -1,11 +1,222 @@
|
|||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import math
|
||||||
|
import os
|
||||||
import re
|
import re
|
||||||
import gradio as gr
|
from pathlib import Path
|
||||||
|
|
||||||
re_param_code = r"\s*([\w ]+):\s*((?:{[^}]*})|(?:[^,]+))(?:,|$)"
|
import gradio as gr
|
||||||
|
from modules.shared import script_path
|
||||||
|
from modules import shared, ui_tempdir
|
||||||
|
import tempfile
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
|
||||||
re_param = re.compile(re_param_code)
|
re_param = re.compile(re_param_code)
|
||||||
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
|
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
|
||||||
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
|
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
|
||||||
|
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
|
||||||
type_of_gr_update = type(gr.update())
|
type_of_gr_update = type(gr.update())
|
||||||
|
paste_fields = {}
|
||||||
|
bind_list = []
|
||||||
|
|
||||||
|
|
||||||
|
def reset():
|
||||||
|
paste_fields.clear()
|
||||||
|
bind_list.clear()
|
||||||
|
|
||||||
|
|
||||||
|
def quote(text):
|
||||||
|
if ',' not in str(text):
|
||||||
|
return text
|
||||||
|
|
||||||
|
text = str(text)
|
||||||
|
text = text.replace('\\', '\\\\')
|
||||||
|
text = text.replace('"', '\\"')
|
||||||
|
return f'"{text}"'
|
||||||
|
|
||||||
|
|
||||||
|
def image_from_url_text(filedata):
|
||||||
|
if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
|
||||||
|
filedata = filedata[0]
|
||||||
|
|
||||||
|
if type(filedata) == dict and filedata.get("is_file", False):
|
||||||
|
filename = filedata["name"]
|
||||||
|
is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
|
||||||
|
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
|
||||||
|
|
||||||
|
return Image.open(filename)
|
||||||
|
|
||||||
|
if type(filedata) == list:
|
||||||
|
if len(filedata) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
filedata = filedata[0]
|
||||||
|
|
||||||
|
if filedata.startswith("data:image/png;base64,"):
|
||||||
|
filedata = filedata[len("data:image/png;base64,"):]
|
||||||
|
|
||||||
|
filedata = base64.decodebytes(filedata.encode('utf-8'))
|
||||||
|
image = Image.open(io.BytesIO(filedata))
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def add_paste_fields(tabname, init_img, fields):
|
||||||
|
paste_fields[tabname] = {"init_img": init_img, "fields": fields}
|
||||||
|
|
||||||
|
# backwards compatibility for existing extensions
|
||||||
|
import modules.ui
|
||||||
|
if tabname == 'txt2img':
|
||||||
|
modules.ui.txt2img_paste_fields = fields
|
||||||
|
elif tabname == 'img2img':
|
||||||
|
modules.ui.img2img_paste_fields = fields
|
||||||
|
|
||||||
|
|
||||||
|
def integrate_settings_paste_fields(component_dict):
|
||||||
|
from modules import ui
|
||||||
|
|
||||||
|
settings_map = {
|
||||||
|
'sd_hypernetwork': 'Hypernet',
|
||||||
|
'sd_hypernetwork_strength': 'Hypernet strength',
|
||||||
|
'CLIP_stop_at_last_layers': 'Clip skip',
|
||||||
|
'inpainting_mask_weight': 'Conditional mask weight',
|
||||||
|
'sd_model_checkpoint': 'Model hash',
|
||||||
|
'eta_noise_seed_delta': 'ENSD',
|
||||||
|
'initial_noise_multiplier': 'Noise multiplier',
|
||||||
|
}
|
||||||
|
settings_paste_fields = [
|
||||||
|
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
|
||||||
|
for k, v in settings_map.items()
|
||||||
|
]
|
||||||
|
|
||||||
|
for tabname, info in paste_fields.items():
|
||||||
|
if info["fields"] is not None:
|
||||||
|
info["fields"] += settings_paste_fields
|
||||||
|
|
||||||
|
|
||||||
|
def create_buttons(tabs_list):
|
||||||
|
buttons = {}
|
||||||
|
for tab in tabs_list:
|
||||||
|
buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
|
||||||
|
return buttons
|
||||||
|
|
||||||
|
|
||||||
|
#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
|
||||||
|
def bind_buttons(buttons, send_image, send_generate_info):
|
||||||
|
bind_list.append([buttons, send_image, send_generate_info])
|
||||||
|
|
||||||
|
|
||||||
|
def send_image_and_dimensions(x):
|
||||||
|
if isinstance(x, Image.Image):
|
||||||
|
img = x
|
||||||
|
else:
|
||||||
|
img = image_from_url_text(x)
|
||||||
|
|
||||||
|
if shared.opts.send_size and isinstance(img, Image.Image):
|
||||||
|
w = img.width
|
||||||
|
h = img.height
|
||||||
|
else:
|
||||||
|
w = gr.update()
|
||||||
|
h = gr.update()
|
||||||
|
|
||||||
|
return img, w, h
|
||||||
|
|
||||||
|
|
||||||
|
def run_bind():
|
||||||
|
for buttons, source_image_component, send_generate_info in bind_list:
|
||||||
|
for tab in buttons:
|
||||||
|
button = buttons[tab]
|
||||||
|
destination_image_component = paste_fields[tab]["init_img"]
|
||||||
|
fields = paste_fields[tab]["fields"]
|
||||||
|
|
||||||
|
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
|
||||||
|
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
|
||||||
|
|
||||||
|
if source_image_component and destination_image_component:
|
||||||
|
if isinstance(source_image_component, gr.Gallery):
|
||||||
|
func = send_image_and_dimensions if destination_width_component else image_from_url_text
|
||||||
|
jsfunc = "extract_image_from_gallery"
|
||||||
|
else:
|
||||||
|
func = send_image_and_dimensions if destination_width_component else lambda x: x
|
||||||
|
jsfunc = None
|
||||||
|
|
||||||
|
button.click(
|
||||||
|
fn=func,
|
||||||
|
_js=jsfunc,
|
||||||
|
inputs=[source_image_component],
|
||||||
|
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
|
||||||
|
)
|
||||||
|
|
||||||
|
if send_generate_info and fields is not None:
|
||||||
|
if send_generate_info in paste_fields:
|
||||||
|
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
|
||||||
|
button.click(
|
||||||
|
fn=lambda *x: x,
|
||||||
|
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
|
||||||
|
outputs=[field for field, name in fields if name in paste_field_names],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
connect_paste(button, fields, send_generate_info)
|
||||||
|
|
||||||
|
button.click(
|
||||||
|
fn=None,
|
||||||
|
_js=f"switch_to_{tab}",
|
||||||
|
inputs=None,
|
||||||
|
outputs=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
|
||||||
|
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
|
||||||
|
|
||||||
|
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
|
||||||
|
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
|
||||||
|
|
||||||
|
If the infotext has no hash, then a hypernet with the same name will be selected instead.
|
||||||
|
"""
|
||||||
|
hypernet_name = hypernet_name.lower()
|
||||||
|
if hypernet_hash is not None:
|
||||||
|
# Try to match the hash in the name
|
||||||
|
for hypernet_key in shared.hypernetworks.keys():
|
||||||
|
result = re_hypernet_hash.search(hypernet_key)
|
||||||
|
if result is not None and result[1] == hypernet_hash:
|
||||||
|
return hypernet_key
|
||||||
|
else:
|
||||||
|
# Fall back to a hypernet with the same name
|
||||||
|
for hypernet_key in shared.hypernetworks.keys():
|
||||||
|
if hypernet_key.lower().startswith(hypernet_name):
|
||||||
|
return hypernet_key
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def restore_old_hires_fix_params(res):
|
||||||
|
"""for infotexts that specify old First pass size parameter, convert it into
|
||||||
|
width, height, and hr scale"""
|
||||||
|
|
||||||
|
firstpass_width = res.get('First pass size-1', None)
|
||||||
|
firstpass_height = res.get('First pass size-2', None)
|
||||||
|
|
||||||
|
if firstpass_width is None or firstpass_height is None:
|
||||||
|
return
|
||||||
|
|
||||||
|
firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height)
|
||||||
|
width = int(res.get("Size-1", 512))
|
||||||
|
height = int(res.get("Size-2", 512))
|
||||||
|
|
||||||
|
if firstpass_width == 0 or firstpass_height == 0:
|
||||||
|
# old algorithm for auto-calculating first pass size
|
||||||
|
desired_pixel_count = 512 * 512
|
||||||
|
actual_pixel_count = width * height
|
||||||
|
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||||
|
firstpass_width = math.ceil(scale * width / 64) * 64
|
||||||
|
firstpass_height = math.ceil(scale * height / 64) * 64
|
||||||
|
|
||||||
|
hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height
|
||||||
|
|
||||||
|
res['Size-1'] = firstpass_width
|
||||||
|
res['Size-2'] = firstpass_height
|
||||||
|
res['Hires upscale'] = hr_scale
|
||||||
|
|
||||||
|
|
||||||
def parse_generation_parameters(x: str):
|
def parse_generation_parameters(x: str):
|
||||||
@ -42,11 +253,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
|||||||
else:
|
else:
|
||||||
prompt += ("" if prompt == "" else "\n") + line
|
prompt += ("" if prompt == "" else "\n") + line
|
||||||
|
|
||||||
if len(prompt) > 0:
|
res["Prompt"] = prompt
|
||||||
res["Prompt"] = prompt
|
res["Negative prompt"] = negative_prompt
|
||||||
|
|
||||||
if len(negative_prompt) > 0:
|
|
||||||
res["Negative prompt"] = negative_prompt
|
|
||||||
|
|
||||||
for k, v in re_param.findall(lastline):
|
for k, v in re_param.findall(lastline):
|
||||||
m = re_imagesize.match(v)
|
m = re_imagesize.match(v)
|
||||||
@ -56,11 +264,31 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
|||||||
else:
|
else:
|
||||||
res[k] = v
|
res[k] = v
|
||||||
|
|
||||||
|
# Missing CLIP skip means it was set to 1 (the default)
|
||||||
|
if "Clip skip" not in res:
|
||||||
|
res["Clip skip"] = "1"
|
||||||
|
|
||||||
|
if "Hypernet strength" not in res:
|
||||||
|
res["Hypernet strength"] = "1"
|
||||||
|
|
||||||
|
if "Hypernet" in res:
|
||||||
|
hypernet_name = res["Hypernet"]
|
||||||
|
hypernet_hash = res.get("Hypernet hash", None)
|
||||||
|
res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
|
||||||
|
|
||||||
|
restore_old_hires_fix_params(res)
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def connect_paste(button, paste_fields, input_comp, js=None):
|
def connect_paste(button, paste_fields, input_comp, jsfunc=None):
|
||||||
def paste_func(prompt):
|
def paste_func(prompt):
|
||||||
|
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
|
||||||
|
filename = os.path.join(script_path, "params.txt")
|
||||||
|
if os.path.exists(filename):
|
||||||
|
with open(filename, "r", encoding="utf8") as file:
|
||||||
|
prompt = file.read()
|
||||||
|
|
||||||
params = parse_generation_parameters(prompt)
|
params = parse_generation_parameters(prompt)
|
||||||
res = []
|
res = []
|
||||||
|
|
||||||
@ -77,7 +305,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
|
|||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
valtype = type(output.value)
|
valtype = type(output.value)
|
||||||
val = valtype(v)
|
|
||||||
|
if valtype == bool and v == "False":
|
||||||
|
val = False
|
||||||
|
else:
|
||||||
|
val = valtype(v)
|
||||||
|
|
||||||
res.append(gr.update(value=val))
|
res.append(gr.update(value=val))
|
||||||
except Exception:
|
except Exception:
|
||||||
res.append(gr.update())
|
res.append(gr.update())
|
||||||
@ -86,7 +319,9 @@ def connect_paste(button, paste_fields, input_comp, js=None):
|
|||||||
|
|
||||||
button.click(
|
button.click(
|
||||||
fn=paste_func,
|
fn=paste_func,
|
||||||
_js=js,
|
_js=jsfunc,
|
||||||
inputs=[input_comp],
|
inputs=[input_comp],
|
||||||
outputs=[x[0] for x in paste_fields],
|
outputs=[x[0] for x in paste_fields],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -21,7 +21,7 @@ def gfpgann():
|
|||||||
global loaded_gfpgan_model
|
global loaded_gfpgan_model
|
||||||
global model_path
|
global model_path
|
||||||
if loaded_gfpgan_model is not None:
|
if loaded_gfpgan_model is not None:
|
||||||
loaded_gfpgan_model.gfpgan.to(shared.device)
|
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
|
||||||
return loaded_gfpgan_model
|
return loaded_gfpgan_model
|
||||||
|
|
||||||
if gfpgan_constructor is None:
|
if gfpgan_constructor is None:
|
||||||
@ -36,23 +36,35 @@ def gfpgann():
|
|||||||
else:
|
else:
|
||||||
print("Unable to load gfpgan model!")
|
print("Unable to load gfpgan model!")
|
||||||
return None
|
return None
|
||||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
if hasattr(facexlib.detection.retinaface, 'device'):
|
||||||
model.gfpgan.to(shared.device)
|
facexlib.detection.retinaface.device = devices.device_gfpgan
|
||||||
|
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
|
||||||
loaded_gfpgan_model = model
|
loaded_gfpgan_model = model
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def send_model_to(model, device):
|
||||||
|
model.gfpgan.to(device)
|
||||||
|
model.face_helper.face_det.to(device)
|
||||||
|
model.face_helper.face_parse.to(device)
|
||||||
|
|
||||||
|
|
||||||
def gfpgan_fix_faces(np_image):
|
def gfpgan_fix_faces(np_image):
|
||||||
model = gfpgann()
|
model = gfpgann()
|
||||||
if model is None:
|
if model is None:
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
|
send_model_to(model, devices.device_gfpgan)
|
||||||
|
|
||||||
np_image_bgr = np_image[:, :, ::-1]
|
np_image_bgr = np_image[:, :, ::-1]
|
||||||
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
||||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
np_image = gfpgan_output_bgr[:, :, ::-1]
|
||||||
|
|
||||||
|
model.face_helper.clean_all()
|
||||||
|
|
||||||
if shared.opts.face_restoration_unload:
|
if shared.opts.face_restoration_unload:
|
||||||
model.gfpgan.to(devices.cpu)
|
send_model_to(model, devices.cpu)
|
||||||
|
|
||||||
return np_image
|
return np_image
|
||||||
|
|
||||||
@ -97,11 +109,7 @@ def setup_model(dirname):
|
|||||||
return "GFPGAN"
|
return "GFPGAN"
|
||||||
|
|
||||||
def restore(self, np_image):
|
def restore(self, np_image):
|
||||||
np_image_bgr = np_image[:, :, ::-1]
|
return gfpgan_fix_faces(np_image)
|
||||||
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgann().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
|
|
||||||
np_image = gfpgan_output_bgr[:, :, ::-1]
|
|
||||||
|
|
||||||
return np_image
|
|
||||||
|
|
||||||
shared.face_restorers.append(FaceRestorerGFPGAN())
|
shared.face_restorers.append(FaceRestorerGFPGAN())
|
||||||
except Exception:
|
except Exception:
|
||||||
|
667
modules/hypernetworks/hypernetwork.py
Normal file
667
modules/hypernetworks/hypernetwork.py
Normal file
@ -0,0 +1,667 @@
|
|||||||
|
import csv
|
||||||
|
import datetime
|
||||||
|
import glob
|
||||||
|
import html
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import inspect
|
||||||
|
|
||||||
|
import modules.textual_inversion.dataset
|
||||||
|
import torch
|
||||||
|
import tqdm
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
from ldm.util import default
|
||||||
|
from modules import devices, processing, sd_models, shared, sd_samplers
|
||||||
|
from modules.textual_inversion import textual_inversion
|
||||||
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
|
from torch import einsum
|
||||||
|
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
|
||||||
|
|
||||||
|
from collections import defaultdict, deque
|
||||||
|
from statistics import stdev, mean
|
||||||
|
|
||||||
|
|
||||||
|
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
||||||
|
|
||||||
|
class HypernetworkModule(torch.nn.Module):
|
||||||
|
multiplier = 1.0
|
||||||
|
activation_dict = {
|
||||||
|
"linear": torch.nn.Identity,
|
||||||
|
"relu": torch.nn.ReLU,
|
||||||
|
"leakyrelu": torch.nn.LeakyReLU,
|
||||||
|
"elu": torch.nn.ELU,
|
||||||
|
"swish": torch.nn.Hardswish,
|
||||||
|
"tanh": torch.nn.Tanh,
|
||||||
|
"sigmoid": torch.nn.Sigmoid,
|
||||||
|
}
|
||||||
|
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
||||||
|
|
||||||
|
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
||||||
|
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
assert layer_structure is not None, "layer_structure must not be None"
|
||||||
|
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
||||||
|
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
||||||
|
|
||||||
|
linears = []
|
||||||
|
for i in range(len(layer_structure) - 1):
|
||||||
|
|
||||||
|
# Add a fully-connected layer
|
||||||
|
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||||
|
|
||||||
|
# Add an activation func except last layer
|
||||||
|
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
||||||
|
pass
|
||||||
|
elif activation_func in self.activation_dict:
|
||||||
|
linears.append(self.activation_dict[activation_func]())
|
||||||
|
else:
|
||||||
|
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
||||||
|
|
||||||
|
# Add layer normalization
|
||||||
|
if add_layer_norm:
|
||||||
|
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||||
|
|
||||||
|
# Add dropout except last layer
|
||||||
|
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
|
||||||
|
linears.append(torch.nn.Dropout(p=0.3))
|
||||||
|
|
||||||
|
self.linear = torch.nn.Sequential(*linears)
|
||||||
|
|
||||||
|
if state_dict is not None:
|
||||||
|
self.fix_old_state_dict(state_dict)
|
||||||
|
self.load_state_dict(state_dict)
|
||||||
|
else:
|
||||||
|
for layer in self.linear:
|
||||||
|
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
||||||
|
w, b = layer.weight.data, layer.bias.data
|
||||||
|
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
|
||||||
|
normal_(w, mean=0.0, std=0.01)
|
||||||
|
normal_(b, mean=0.0, std=0)
|
||||||
|
elif weight_init == 'XavierUniform':
|
||||||
|
xavier_uniform_(w)
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'XavierNormal':
|
||||||
|
xavier_normal_(w)
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'KaimingUniform':
|
||||||
|
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
||||||
|
zeros_(b)
|
||||||
|
elif weight_init == 'KaimingNormal':
|
||||||
|
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
|
||||||
|
zeros_(b)
|
||||||
|
else:
|
||||||
|
raise KeyError(f"Key {weight_init} is not defined as initialization!")
|
||||||
|
self.to(devices.device)
|
||||||
|
|
||||||
|
def fix_old_state_dict(self, state_dict):
|
||||||
|
changes = {
|
||||||
|
'linear1.bias': 'linear.0.bias',
|
||||||
|
'linear1.weight': 'linear.0.weight',
|
||||||
|
'linear2.bias': 'linear.1.bias',
|
||||||
|
'linear2.weight': 'linear.1.weight',
|
||||||
|
}
|
||||||
|
|
||||||
|
for fr, to in changes.items():
|
||||||
|
x = state_dict.get(fr, None)
|
||||||
|
if x is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
del state_dict[fr]
|
||||||
|
state_dict[to] = x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.linear(x) * self.multiplier
|
||||||
|
|
||||||
|
def trainables(self):
|
||||||
|
layer_structure = []
|
||||||
|
for layer in self.linear:
|
||||||
|
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
|
||||||
|
layer_structure += [layer.weight, layer.bias]
|
||||||
|
return layer_structure
|
||||||
|
|
||||||
|
|
||||||
|
def apply_strength(value=None):
|
||||||
|
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
|
||||||
|
|
||||||
|
|
||||||
|
class Hypernetwork:
|
||||||
|
filename = None
|
||||||
|
name = None
|
||||||
|
|
||||||
|
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
|
||||||
|
self.filename = None
|
||||||
|
self.name = name
|
||||||
|
self.layers = {}
|
||||||
|
self.step = 0
|
||||||
|
self.sd_checkpoint = None
|
||||||
|
self.sd_checkpoint_name = None
|
||||||
|
self.layer_structure = layer_structure
|
||||||
|
self.activation_func = activation_func
|
||||||
|
self.weight_init = weight_init
|
||||||
|
self.add_layer_norm = add_layer_norm
|
||||||
|
self.use_dropout = use_dropout
|
||||||
|
self.activate_output = activate_output
|
||||||
|
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
|
||||||
|
self.optimizer_name = None
|
||||||
|
self.optimizer_state_dict = None
|
||||||
|
|
||||||
|
for size in enable_sizes or []:
|
||||||
|
self.layers[size] = (
|
||||||
|
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||||
|
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||||
|
)
|
||||||
|
self.eval_mode()
|
||||||
|
|
||||||
|
def weights(self):
|
||||||
|
res = []
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
res += layer.parameters()
|
||||||
|
return res
|
||||||
|
|
||||||
|
def train_mode(self):
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
layer.train()
|
||||||
|
for param in layer.parameters():
|
||||||
|
param.requires_grad = True
|
||||||
|
|
||||||
|
def eval_mode(self):
|
||||||
|
for k, layers in self.layers.items():
|
||||||
|
for layer in layers:
|
||||||
|
layer.eval()
|
||||||
|
for param in layer.parameters():
|
||||||
|
param.requires_grad = False
|
||||||
|
|
||||||
|
def save(self, filename):
|
||||||
|
state_dict = {}
|
||||||
|
optimizer_saved_dict = {}
|
||||||
|
|
||||||
|
for k, v in self.layers.items():
|
||||||
|
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
||||||
|
|
||||||
|
state_dict['step'] = self.step
|
||||||
|
state_dict['name'] = self.name
|
||||||
|
state_dict['layer_structure'] = self.layer_structure
|
||||||
|
state_dict['activation_func'] = self.activation_func
|
||||||
|
state_dict['is_layer_norm'] = self.add_layer_norm
|
||||||
|
state_dict['weight_initialization'] = self.weight_init
|
||||||
|
state_dict['use_dropout'] = self.use_dropout
|
||||||
|
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||||
|
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||||
|
state_dict['activate_output'] = self.activate_output
|
||||||
|
state_dict['last_layer_dropout'] = self.last_layer_dropout
|
||||||
|
|
||||||
|
if self.optimizer_name is not None:
|
||||||
|
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
|
||||||
|
|
||||||
|
torch.save(state_dict, filename)
|
||||||
|
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
|
||||||
|
optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
|
||||||
|
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
||||||
|
torch.save(optimizer_saved_dict, filename + '.optim')
|
||||||
|
|
||||||
|
def load(self, filename):
|
||||||
|
self.filename = filename
|
||||||
|
if self.name is None:
|
||||||
|
self.name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
|
|
||||||
|
state_dict = torch.load(filename, map_location='cpu')
|
||||||
|
|
||||||
|
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
||||||
|
print(self.layer_structure)
|
||||||
|
self.activation_func = state_dict.get('activation_func', None)
|
||||||
|
print(f"Activation function is {self.activation_func}")
|
||||||
|
self.weight_init = state_dict.get('weight_initialization', 'Normal')
|
||||||
|
print(f"Weight initialization is {self.weight_init}")
|
||||||
|
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
||||||
|
print(f"Layer norm is set to {self.add_layer_norm}")
|
||||||
|
self.use_dropout = state_dict.get('use_dropout', False)
|
||||||
|
print(f"Dropout usage is set to {self.use_dropout}" )
|
||||||
|
self.activate_output = state_dict.get('activate_output', True)
|
||||||
|
print(f"Activate last layer is set to {self.activate_output}")
|
||||||
|
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
||||||
|
|
||||||
|
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
|
||||||
|
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
|
||||||
|
print(f"Optimizer name is {self.optimizer_name}")
|
||||||
|
if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
|
||||||
|
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
||||||
|
else:
|
||||||
|
self.optimizer_state_dict = None
|
||||||
|
if self.optimizer_state_dict:
|
||||||
|
print("Loaded existing optimizer from checkpoint")
|
||||||
|
else:
|
||||||
|
print("No saved optimizer exists in checkpoint")
|
||||||
|
|
||||||
|
for size, sd in state_dict.items():
|
||||||
|
if type(size) == int:
|
||||||
|
self.layers[size] = (
|
||||||
|
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||||
|
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
|
||||||
|
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.name = state_dict.get('name', self.name)
|
||||||
|
self.step = state_dict.get('step', 0)
|
||||||
|
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
|
||||||
|
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
|
||||||
|
|
||||||
|
|
||||||
|
def list_hypernetworks(path):
|
||||||
|
res = {}
|
||||||
|
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
|
||||||
|
name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
|
# Prevent a hypothetical "None.pt" from being listed.
|
||||||
|
if name != "None":
|
||||||
|
res[name + f"({sd_models.model_hash(filename)})"] = filename
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def load_hypernetwork(filename):
|
||||||
|
path = shared.hypernetworks.get(filename, None)
|
||||||
|
# Prevent any file named "None.pt" from being loaded.
|
||||||
|
if path is not None and filename != "None":
|
||||||
|
print(f"Loading hypernetwork {filename}")
|
||||||
|
try:
|
||||||
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
else:
|
||||||
|
if shared.loaded_hypernetwork is not None:
|
||||||
|
print("Unloading hypernetwork")
|
||||||
|
|
||||||
|
shared.loaded_hypernetwork = None
|
||||||
|
|
||||||
|
|
||||||
|
def find_closest_hypernetwork_name(search: str):
|
||||||
|
if not search:
|
||||||
|
return None
|
||||||
|
search = search.lower()
|
||||||
|
applicable = [name for name in shared.hypernetworks if search in name.lower()]
|
||||||
|
if not applicable:
|
||||||
|
return None
|
||||||
|
applicable = sorted(applicable, key=lambda name: len(name))
|
||||||
|
return applicable[0]
|
||||||
|
|
||||||
|
|
||||||
|
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||||
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
|
if hypernetwork_layers is None:
|
||||||
|
return context, context
|
||||||
|
|
||||||
|
if layer is not None:
|
||||||
|
layer.hyper_k = hypernetwork_layers[0]
|
||||||
|
layer.hyper_v = hypernetwork_layers[1]
|
||||||
|
|
||||||
|
context_k = hypernetwork_layers[0](context)
|
||||||
|
context_v = hypernetwork_layers[1](context)
|
||||||
|
return context_k, context_v
|
||||||
|
|
||||||
|
|
||||||
|
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
|
||||||
|
k = self.to_k(context_k)
|
||||||
|
v = self.to_v(context_v)
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
|
|
||||||
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
||||||
|
|
||||||
|
if mask is not None:
|
||||||
|
mask = rearrange(mask, 'b ... -> b (...)')
|
||||||
|
max_neg_value = -torch.finfo(sim.dtype).max
|
||||||
|
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
||||||
|
sim.masked_fill_(~mask, max_neg_value)
|
||||||
|
|
||||||
|
# attention, what we cannot get enough of
|
||||||
|
attn = sim.softmax(dim=-1)
|
||||||
|
|
||||||
|
out = einsum('b i j, b j d -> b i d', attn, v)
|
||||||
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||||||
|
return self.to_out(out)
|
||||||
|
|
||||||
|
|
||||||
|
def stack_conds(conds):
|
||||||
|
if len(conds) == 1:
|
||||||
|
return torch.stack(conds)
|
||||||
|
|
||||||
|
# same as in reconstruct_multicond_batch
|
||||||
|
token_count = max([x.shape[0] for x in conds])
|
||||||
|
for i in range(len(conds)):
|
||||||
|
if conds[i].shape[0] != token_count:
|
||||||
|
last_vector = conds[i][-1:]
|
||||||
|
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
|
||||||
|
conds[i] = torch.vstack([conds[i], last_vector_repeated])
|
||||||
|
|
||||||
|
return torch.stack(conds)
|
||||||
|
|
||||||
|
|
||||||
|
def statistics(data):
|
||||||
|
if len(data) < 2:
|
||||||
|
std = 0
|
||||||
|
else:
|
||||||
|
std = stdev(data)
|
||||||
|
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
|
||||||
|
recent_data = data[-32:]
|
||||||
|
if len(recent_data) < 2:
|
||||||
|
std = 0
|
||||||
|
else:
|
||||||
|
std = stdev(recent_data)
|
||||||
|
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
|
||||||
|
return total_information, recent_information
|
||||||
|
|
||||||
|
|
||||||
|
def report_statistics(loss_info:dict):
|
||||||
|
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
|
||||||
|
for key in keys:
|
||||||
|
try:
|
||||||
|
print("Loss statistics for file " + key)
|
||||||
|
info, recent = statistics(list(loss_info[key]))
|
||||||
|
print(info)
|
||||||
|
print(recent)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
|
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||||
|
# Remove illegal characters from name.
|
||||||
|
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
||||||
|
|
||||||
|
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||||
|
if not overwrite_old:
|
||||||
|
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||||
|
|
||||||
|
if type(layer_structure) == str:
|
||||||
|
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
||||||
|
|
||||||
|
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
||||||
|
name=name,
|
||||||
|
enable_sizes=[int(x) for x in enable_sizes],
|
||||||
|
layer_structure=layer_structure,
|
||||||
|
activation_func=activation_func,
|
||||||
|
weight_init=weight_init,
|
||||||
|
add_layer_norm=add_layer_norm,
|
||||||
|
use_dropout=use_dropout,
|
||||||
|
)
|
||||||
|
hypernet.save(fn)
|
||||||
|
|
||||||
|
shared.reload_hypernetworks()
|
||||||
|
|
||||||
|
return fn
|
||||||
|
|
||||||
|
|
||||||
|
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
|
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||||
|
from modules import images
|
||||||
|
|
||||||
|
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||||
|
create_image_every = create_image_every or 0
|
||||||
|
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||||
|
|
||||||
|
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||||
|
shared.loaded_hypernetwork = Hypernetwork()
|
||||||
|
shared.loaded_hypernetwork.load(path)
|
||||||
|
|
||||||
|
shared.state.job = "train-hypernetwork"
|
||||||
|
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||||
|
shared.state.job_count = steps
|
||||||
|
|
||||||
|
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
|
||||||
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||||
|
|
||||||
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
||||||
|
unload = shared.opts.unload_models_when_training
|
||||||
|
|
||||||
|
if save_hypernetwork_every > 0:
|
||||||
|
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
|
||||||
|
os.makedirs(hypernetwork_dir, exist_ok=True)
|
||||||
|
else:
|
||||||
|
hypernetwork_dir = None
|
||||||
|
|
||||||
|
if create_image_every > 0:
|
||||||
|
images_dir = os.path.join(log_directory, "images")
|
||||||
|
os.makedirs(images_dir, exist_ok=True)
|
||||||
|
else:
|
||||||
|
images_dir = None
|
||||||
|
|
||||||
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
|
checkpoint = sd_models.select_checkpoint()
|
||||||
|
|
||||||
|
initial_step = hypernetwork.step or 0
|
||||||
|
if initial_step >= steps:
|
||||||
|
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
||||||
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||||
|
|
||||||
|
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||||
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||||
|
|
||||||
|
pin_memory = shared.opts.pin_memory
|
||||||
|
|
||||||
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||||
|
|
||||||
|
latent_sampling_method = ds.latent_sampling_method
|
||||||
|
|
||||||
|
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||||
|
|
||||||
|
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
||||||
|
|
||||||
|
if unload:
|
||||||
|
shared.parallel_processing_allowed = False
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
|
||||||
|
weights = hypernetwork.weights()
|
||||||
|
hypernetwork.train_mode()
|
||||||
|
|
||||||
|
# Here we use optimizer from saved HN, or we can specify as UI option.
|
||||||
|
if hypernetwork.optimizer_name in optimizer_dict:
|
||||||
|
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
||||||
|
optimizer_name = hypernetwork.optimizer_name
|
||||||
|
else:
|
||||||
|
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
|
||||||
|
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
||||||
|
optimizer_name = 'AdamW'
|
||||||
|
|
||||||
|
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
||||||
|
try:
|
||||||
|
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
||||||
|
except RuntimeError as e:
|
||||||
|
print("Cannot resume from saved optimizer!")
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
scaler = torch.cuda.amp.GradScaler()
|
||||||
|
|
||||||
|
batch_size = ds.batch_size
|
||||||
|
gradient_step = ds.gradient_step
|
||||||
|
# n steps = batch_size * gradient_step * n image processed
|
||||||
|
steps_per_epoch = len(ds) // batch_size // gradient_step
|
||||||
|
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
||||||
|
loss_step = 0
|
||||||
|
_loss_step = 0 #internal
|
||||||
|
# size = len(ds.indexes)
|
||||||
|
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
|
# losses = torch.zeros((size,))
|
||||||
|
# previous_mean_losses = [0]
|
||||||
|
# previous_mean_loss = 0
|
||||||
|
# print("Mean loss of {} elements".format(size))
|
||||||
|
|
||||||
|
steps_without_grad = 0
|
||||||
|
|
||||||
|
last_saved_file = "<none>"
|
||||||
|
last_saved_image = "<none>"
|
||||||
|
forced_filename = "<none>"
|
||||||
|
|
||||||
|
pbar = tqdm.tqdm(total=steps - initial_step)
|
||||||
|
try:
|
||||||
|
for i in range((steps-initial_step) * gradient_step):
|
||||||
|
if scheduler.finished:
|
||||||
|
break
|
||||||
|
if shared.state.interrupted:
|
||||||
|
break
|
||||||
|
for j, batch in enumerate(dl):
|
||||||
|
# works as a drop_last=True for gradient accumulation
|
||||||
|
if j == max_steps_per_epoch:
|
||||||
|
break
|
||||||
|
scheduler.apply(optimizer, hypernetwork.step)
|
||||||
|
if scheduler.finished:
|
||||||
|
break
|
||||||
|
if shared.state.interrupted:
|
||||||
|
break
|
||||||
|
|
||||||
|
with devices.autocast():
|
||||||
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||||
|
if tag_drop_out != 0 or shuffle_tags:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
else:
|
||||||
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||||
|
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||||
|
del x
|
||||||
|
del c
|
||||||
|
|
||||||
|
_loss_step += loss.item()
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
# go back until we reach gradient accumulation steps
|
||||||
|
if (j + 1) % gradient_step != 0:
|
||||||
|
continue
|
||||||
|
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
|
||||||
|
# scaler.unscale_(optimizer)
|
||||||
|
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||||
|
# torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
|
||||||
|
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
hypernetwork.step += 1
|
||||||
|
pbar.update()
|
||||||
|
optimizer.zero_grad(set_to_none=True)
|
||||||
|
loss_step = _loss_step
|
||||||
|
_loss_step = 0
|
||||||
|
|
||||||
|
steps_done = hypernetwork.step + 1
|
||||||
|
|
||||||
|
epoch_num = hypernetwork.step // steps_per_epoch
|
||||||
|
epoch_step = hypernetwork.step % steps_per_epoch
|
||||||
|
|
||||||
|
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
|
||||||
|
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||||
|
# Before saving, change name to match current checkpoint.
|
||||||
|
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||||
|
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||||
|
hypernetwork.optimizer_name = optimizer_name
|
||||||
|
if shared.opts.save_optimizer_state:
|
||||||
|
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||||
|
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||||
|
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||||
|
|
||||||
|
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||||
|
"loss": f"{loss_step:.7f}",
|
||||||
|
"learn_rate": scheduler.learn_rate
|
||||||
|
})
|
||||||
|
|
||||||
|
if images_dir is not None and steps_done % create_image_every == 0:
|
||||||
|
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
||||||
|
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||||
|
hypernetwork.eval_mode()
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
|
||||||
|
p = processing.StableDiffusionProcessingTxt2Img(
|
||||||
|
sd_model=shared.sd_model,
|
||||||
|
do_not_save_grid=True,
|
||||||
|
do_not_save_samples=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
if preview_from_txt2img:
|
||||||
|
p.prompt = preview_prompt
|
||||||
|
p.negative_prompt = preview_negative_prompt
|
||||||
|
p.steps = preview_steps
|
||||||
|
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||||
|
p.cfg_scale = preview_cfg_scale
|
||||||
|
p.seed = preview_seed
|
||||||
|
p.width = preview_width
|
||||||
|
p.height = preview_height
|
||||||
|
else:
|
||||||
|
p.prompt = batch.cond_text[0]
|
||||||
|
p.steps = 20
|
||||||
|
p.width = training_width
|
||||||
|
p.height = training_height
|
||||||
|
|
||||||
|
preview_text = p.prompt
|
||||||
|
|
||||||
|
processed = processing.process_images(p)
|
||||||
|
image = processed.images[0] if len(processed.images) > 0 else None
|
||||||
|
|
||||||
|
if unload:
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||||
|
hypernetwork.train_mode()
|
||||||
|
if image is not None:
|
||||||
|
shared.state.current_image = image
|
||||||
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||||
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
shared.state.job_no = hypernetwork.step
|
||||||
|
|
||||||
|
shared.state.textinfo = f"""
|
||||||
|
<p>
|
||||||
|
Loss: {loss_step:.7f}<br/>
|
||||||
|
Step: {steps_done}<br/>
|
||||||
|
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
||||||
|
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
||||||
|
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||||
|
</p>
|
||||||
|
"""
|
||||||
|
except Exception:
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
finally:
|
||||||
|
pbar.leave = False
|
||||||
|
pbar.close()
|
||||||
|
hypernetwork.eval_mode()
|
||||||
|
#report_statistics(loss_dict)
|
||||||
|
|
||||||
|
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||||
|
hypernetwork.optimizer_name = optimizer_name
|
||||||
|
if shared.opts.save_optimizer_state:
|
||||||
|
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||||
|
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||||
|
|
||||||
|
del optimizer
|
||||||
|
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
shared.parallel_processing_allowed = old_parallel_processing_allowed
|
||||||
|
|
||||||
|
return hypernetwork, filename
|
||||||
|
|
||||||
|
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||||
|
old_hypernetwork_name = hypernetwork.name
|
||||||
|
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
||||||
|
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
|
||||||
|
try:
|
||||||
|
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||||
|
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||||
|
hypernetwork.name = hypernetwork_name
|
||||||
|
hypernetwork.save(filename)
|
||||||
|
except:
|
||||||
|
hypernetwork.sd_checkpoint = old_sd_checkpoint
|
||||||
|
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
|
||||||
|
hypernetwork.name = old_hypernetwork_name
|
||||||
|
raise
|
41
modules/hypernetworks/ui.py
Normal file
41
modules/hypernetworks/ui.py
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
import html
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
|
||||||
|
import gradio as gr
|
||||||
|
import modules.hypernetworks.hypernetwork
|
||||||
|
from modules import devices, sd_hijack, shared
|
||||||
|
|
||||||
|
not_available = ["hardswish", "multiheadattention"]
|
||||||
|
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||||
|
|
||||||
|
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||||
|
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
|
||||||
|
|
||||||
|
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
|
||||||
|
|
||||||
|
|
||||||
|
def train_hypernetwork(*args):
|
||||||
|
|
||||||
|
initial_hypernetwork = shared.loaded_hypernetwork
|
||||||
|
|
||||||
|
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
|
||||||
|
|
||||||
|
try:
|
||||||
|
sd_hijack.undo_optimizations()
|
||||||
|
|
||||||
|
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
|
||||||
|
|
||||||
|
res = f"""
|
||||||
|
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
|
||||||
|
Hypernetwork saved to {html.escape(filename)}
|
||||||
|
"""
|
||||||
|
return res, ""
|
||||||
|
except Exception:
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
shared.loaded_hypernetwork = initial_hypernetwork
|
||||||
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
shared.sd_model.first_stage_model.to(devices.device)
|
||||||
|
sd_hijack.apply_optimizations()
|
||||||
|
|
@ -1,4 +1,9 @@
|
|||||||
import datetime
|
import datetime
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import pytz
|
||||||
|
import io
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
@ -10,8 +15,9 @@ import piexif.helper
|
|||||||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
||||||
from fonts.ttf import Roboto
|
from fonts.ttf import Roboto
|
||||||
import string
|
import string
|
||||||
|
import json
|
||||||
|
|
||||||
from modules import sd_samplers, shared
|
from modules import sd_samplers, shared, script_callbacks
|
||||||
from modules.shared import opts, cmd_opts
|
from modules.shared import opts, cmd_opts
|
||||||
|
|
||||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||||
@ -23,17 +29,24 @@ def image_grid(imgs, batch_size=1, rows=None):
|
|||||||
rows = opts.n_rows
|
rows = opts.n_rows
|
||||||
elif opts.n_rows == 0:
|
elif opts.n_rows == 0:
|
||||||
rows = batch_size
|
rows = batch_size
|
||||||
|
elif opts.grid_prevent_empty_spots:
|
||||||
|
rows = math.floor(math.sqrt(len(imgs)))
|
||||||
|
while len(imgs) % rows != 0:
|
||||||
|
rows -= 1
|
||||||
else:
|
else:
|
||||||
rows = math.sqrt(len(imgs))
|
rows = math.sqrt(len(imgs))
|
||||||
rows = round(rows)
|
rows = round(rows)
|
||||||
|
|
||||||
cols = math.ceil(len(imgs) / rows)
|
cols = math.ceil(len(imgs) / rows)
|
||||||
|
|
||||||
w, h = imgs[0].size
|
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
|
||||||
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
|
script_callbacks.image_grid_callback(params)
|
||||||
|
|
||||||
for i, img in enumerate(imgs):
|
w, h = imgs[0].size
|
||||||
grid.paste(img, box=(i % cols * w, i // cols * h))
|
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
|
||||||
|
|
||||||
|
for i, img in enumerate(params.imgs):
|
||||||
|
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
|
||||||
|
|
||||||
return grid
|
return grid
|
||||||
|
|
||||||
@ -126,8 +139,19 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
lines.append(word)
|
lines.append(word)
|
||||||
return lines
|
return lines
|
||||||
|
|
||||||
def draw_texts(drawing, draw_x, draw_y, lines):
|
def get_font(fontsize):
|
||||||
|
try:
|
||||||
|
return ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||||
|
except Exception:
|
||||||
|
return ImageFont.truetype(Roboto, fontsize)
|
||||||
|
|
||||||
|
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
|
||||||
for i, line in enumerate(lines):
|
for i, line in enumerate(lines):
|
||||||
|
fnt = initial_fnt
|
||||||
|
fontsize = initial_fontsize
|
||||||
|
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
|
||||||
|
fontsize -= 1
|
||||||
|
fnt = get_font(fontsize)
|
||||||
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
||||||
|
|
||||||
if not line.is_active:
|
if not line.is_active:
|
||||||
@ -138,10 +162,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
fontsize = (width + height) // 25
|
fontsize = (width + height) // 25
|
||||||
line_spacing = fontsize // 2
|
line_spacing = fontsize // 2
|
||||||
|
|
||||||
try:
|
fnt = get_font(fontsize)
|
||||||
fnt = ImageFont.truetype(opts.font or Roboto, fontsize)
|
|
||||||
except Exception:
|
|
||||||
fnt = ImageFont.truetype(Roboto, fontsize)
|
|
||||||
|
|
||||||
color_active = (0, 0, 0)
|
color_active = (0, 0, 0)
|
||||||
color_inactive = (153, 153, 153)
|
color_inactive = (153, 153, 153)
|
||||||
@ -168,6 +189,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
for line in texts:
|
for line in texts:
|
||||||
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
||||||
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
||||||
|
line.allowed_width = allowed_width
|
||||||
|
|
||||||
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
||||||
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
|
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
|
||||||
@ -184,13 +206,13 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
|||||||
x = pad_left + width * col + width / 2
|
x = pad_left + width * col + width / 2
|
||||||
y = pad_top / 2 - hor_text_heights[col] / 2
|
y = pad_top / 2 - hor_text_heights[col] / 2
|
||||||
|
|
||||||
draw_texts(d, x, y, hor_texts[col])
|
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
|
||||||
|
|
||||||
for row in range(rows):
|
for row in range(rows):
|
||||||
x = pad_left / 2
|
x = pad_left / 2
|
||||||
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
|
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
|
||||||
|
|
||||||
draw_texts(d, x, y, ver_texts[row])
|
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@ -208,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts):
|
|||||||
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
|
return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
|
||||||
|
|
||||||
|
|
||||||
def resize_image(resize_mode, im, width, height):
|
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||||
|
"""
|
||||||
|
Resizes an image with the specified resize_mode, width, and height.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
resize_mode: The mode to use when resizing the image.
|
||||||
|
0: Resize the image to the specified width and height.
|
||||||
|
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
||||||
|
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
||||||
|
im: The image to resize.
|
||||||
|
width: The width to resize the image to.
|
||||||
|
height: The height to resize the image to.
|
||||||
|
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
||||||
|
"""
|
||||||
|
|
||||||
|
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
||||||
|
|
||||||
def resize(im, w, h):
|
def resize(im, w, h):
|
||||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L':
|
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
|
||||||
return im.resize((w, h), resample=LANCZOS)
|
return im.resize((w, h), resample=LANCZOS)
|
||||||
|
|
||||||
scale = max(w / im.width, h / im.height)
|
scale = max(w / im.width, h / im.height)
|
||||||
|
|
||||||
if scale > 1.0:
|
if scale > 1.0:
|
||||||
upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img]
|
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
|
||||||
assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}"
|
assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
|
||||||
|
|
||||||
upscaler = upscalers[0]
|
upscaler = upscalers[0]
|
||||||
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
||||||
@ -268,10 +306,15 @@ invalid_filename_chars = '<>:"/\\|?*\n'
|
|||||||
invalid_filename_prefix = ' '
|
invalid_filename_prefix = ' '
|
||||||
invalid_filename_postfix = ' .'
|
invalid_filename_postfix = ' .'
|
||||||
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
||||||
|
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
|
||||||
|
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
|
||||||
max_filename_part_length = 128
|
max_filename_part_length = 128
|
||||||
|
|
||||||
|
|
||||||
def sanitize_filename_part(text, replace_spaces=True):
|
def sanitize_filename_part(text, replace_spaces=True):
|
||||||
|
if text is None:
|
||||||
|
return None
|
||||||
|
|
||||||
if replace_spaces:
|
if replace_spaces:
|
||||||
text = text.replace(' ', '_')
|
text = text.replace(' ', '_')
|
||||||
|
|
||||||
@ -281,48 +324,105 @@ def sanitize_filename_part(text, replace_spaces=True):
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
def apply_filename_pattern(x, p, seed, prompt):
|
class FilenameGenerator:
|
||||||
max_prompt_words = opts.directories_max_prompt_words
|
replacements = {
|
||||||
|
'seed': lambda self: self.seed if self.seed is not None else '',
|
||||||
|
'steps': lambda self: self.p and self.p.steps,
|
||||||
|
'cfg': lambda self: self.p and self.p.cfg_scale,
|
||||||
|
'width': lambda self: self.image.width,
|
||||||
|
'height': lambda self: self.image.height,
|
||||||
|
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||||
|
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||||
|
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||||
|
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
|
||||||
|
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||||
|
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
||||||
|
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
|
||||||
|
'prompt': lambda self: sanitize_filename_part(self.prompt),
|
||||||
|
'prompt_no_styles': lambda self: self.prompt_no_style(),
|
||||||
|
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
|
||||||
|
'prompt_words': lambda self: self.prompt_words(),
|
||||||
|
}
|
||||||
|
default_time_format = '%Y%m%d%H%M%S'
|
||||||
|
|
||||||
if seed is not None:
|
def __init__(self, p, seed, prompt, image):
|
||||||
x = x.replace("[seed]", str(seed))
|
self.p = p
|
||||||
|
self.seed = seed
|
||||||
|
self.prompt = prompt
|
||||||
|
self.image = image
|
||||||
|
|
||||||
if prompt is not None:
|
def prompt_no_style(self):
|
||||||
x = x.replace("[prompt]", sanitize_filename_part(prompt))
|
if self.p is None or self.prompt is None:
|
||||||
if "[prompt_no_styles]" in x:
|
return None
|
||||||
prompt_no_style = prompt
|
|
||||||
for style in shared.prompt_styles.get_style_prompts(p.styles):
|
|
||||||
if len(style) > 0:
|
|
||||||
style_parts = [y for y in style.split("{prompt}")]
|
|
||||||
for part in style_parts:
|
|
||||||
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
|
||||||
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
|
||||||
x = x.replace("[prompt_no_styles]", sanitize_filename_part(prompt_no_style, replace_spaces=False))
|
|
||||||
|
|
||||||
x = x.replace("[prompt_spaces]", sanitize_filename_part(prompt, replace_spaces=False))
|
prompt_no_style = self.prompt
|
||||||
if "[prompt_words]" in x:
|
for style in shared.prompt_styles.get_style_prompts(self.p.styles):
|
||||||
words = [x for x in re_nonletters.split(prompt or "") if len(x) > 0]
|
if len(style) > 0:
|
||||||
if len(words) == 0:
|
for part in style.split("{prompt}"):
|
||||||
words = ["empty"]
|
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
||||||
x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
|
|
||||||
|
|
||||||
if p is not None:
|
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
||||||
x = x.replace("[steps]", str(p.steps))
|
|
||||||
x = x.replace("[cfg]", str(p.cfg_scale))
|
|
||||||
x = x.replace("[width]", str(p.width))
|
|
||||||
x = x.replace("[height]", str(p.height))
|
|
||||||
x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]), replace_spaces=False))
|
|
||||||
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
|
|
||||||
|
|
||||||
x = x.replace("[model_hash]", shared.sd_model.sd_model_hash)
|
return sanitize_filename_part(prompt_no_style, replace_spaces=False)
|
||||||
x = x.replace("[date]", datetime.date.today().isoformat())
|
|
||||||
x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
|
|
||||||
x = x.replace("[job_timestamp]", shared.state.job_timestamp)
|
|
||||||
|
|
||||||
if cmd_opts.hide_ui_dir_config:
|
def prompt_words(self):
|
||||||
x = re.sub(r'^[\\/]+|\.{2,}[\\/]+|[\\/]+\.{2,}', '', x)
|
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
|
||||||
|
if len(words) == 0:
|
||||||
|
words = ["empty"]
|
||||||
|
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
|
||||||
|
|
||||||
return x
|
def datetime(self, *args):
|
||||||
|
time_datetime = datetime.datetime.now()
|
||||||
|
|
||||||
|
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
|
||||||
|
try:
|
||||||
|
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
|
||||||
|
except pytz.exceptions.UnknownTimeZoneError as _:
|
||||||
|
time_zone = None
|
||||||
|
|
||||||
|
time_zone_time = time_datetime.astimezone(time_zone)
|
||||||
|
try:
|
||||||
|
formatted_time = time_zone_time.strftime(time_format)
|
||||||
|
except (ValueError, TypeError) as _:
|
||||||
|
formatted_time = time_zone_time.strftime(self.default_time_format)
|
||||||
|
|
||||||
|
return sanitize_filename_part(formatted_time, replace_spaces=False)
|
||||||
|
|
||||||
|
def apply(self, x):
|
||||||
|
res = ''
|
||||||
|
|
||||||
|
for m in re_pattern.finditer(x):
|
||||||
|
text, pattern = m.groups()
|
||||||
|
res += text
|
||||||
|
|
||||||
|
if pattern is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
pattern_args = []
|
||||||
|
while True:
|
||||||
|
m = re_pattern_arg.match(pattern)
|
||||||
|
if m is None:
|
||||||
|
break
|
||||||
|
|
||||||
|
pattern, arg = m.groups()
|
||||||
|
pattern_args.insert(0, arg)
|
||||||
|
|
||||||
|
fun = self.replacements.get(pattern.lower())
|
||||||
|
if fun is not None:
|
||||||
|
try:
|
||||||
|
replacement = fun(self, *pattern_args)
|
||||||
|
except Exception:
|
||||||
|
replacement = None
|
||||||
|
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
if replacement is not None:
|
||||||
|
res += str(replacement)
|
||||||
|
continue
|
||||||
|
|
||||||
|
res += f'[{pattern}]'
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def get_next_sequence_number(path, basename):
|
def get_next_sequence_number(path, basename):
|
||||||
@ -347,65 +447,126 @@ def get_next_sequence_number(path, basename):
|
|||||||
return result + 1
|
return result + 1
|
||||||
|
|
||||||
|
|
||||||
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix=""):
|
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
||||||
if short_filename or prompt is None or seed is None:
|
"""Save an image.
|
||||||
file_decoration = ""
|
|
||||||
elif opts.save_to_dirs:
|
|
||||||
file_decoration = opts.samples_filename_pattern or "[seed]"
|
|
||||||
else:
|
|
||||||
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
|
||||||
|
|
||||||
if file_decoration != "":
|
Args:
|
||||||
file_decoration = "-" + file_decoration.lower()
|
image (`PIL.Image`):
|
||||||
|
The image to be saved.
|
||||||
|
path (`str`):
|
||||||
|
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
||||||
|
basename (`str`):
|
||||||
|
The base filename which will be applied to `filename pattern`.
|
||||||
|
seed, prompt, short_filename,
|
||||||
|
extension (`str`):
|
||||||
|
Image file extension, default is `png`.
|
||||||
|
pngsectionname (`str`):
|
||||||
|
Specify the name of the section which `info` will be saved in.
|
||||||
|
info (`str` or `PngImagePlugin.iTXt`):
|
||||||
|
PNG info chunks.
|
||||||
|
existing_info (`dict`):
|
||||||
|
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
|
||||||
|
no_prompt:
|
||||||
|
TODO I don't know its meaning.
|
||||||
|
p (`StableDiffusionProcessing`)
|
||||||
|
forced_filename (`str`):
|
||||||
|
If specified, `basename` and filename pattern will be ignored.
|
||||||
|
save_to_dirs (bool):
|
||||||
|
If true, the image will be saved into a subdirectory of `path`.
|
||||||
|
|
||||||
file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix
|
Returns: (fullfn, txt_fullfn)
|
||||||
|
fullfn (`str`):
|
||||||
|
The full path of the saved imaged.
|
||||||
|
txt_fullfn (`str` or None):
|
||||||
|
If a text file is saved for this image, this will be its full path. Otherwise None.
|
||||||
|
"""
|
||||||
|
namegen = FilenameGenerator(p, seed, prompt, image)
|
||||||
|
|
||||||
if extension == 'png' and opts.enable_pnginfo and info is not None:
|
if save_to_dirs is None:
|
||||||
pnginfo = PngImagePlugin.PngInfo()
|
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
||||||
|
|
||||||
if existing_info is not None:
|
|
||||||
for k, v in existing_info.items():
|
|
||||||
pnginfo.add_text(k, str(v))
|
|
||||||
|
|
||||||
pnginfo.add_text(pnginfo_section_name, info)
|
|
||||||
else:
|
|
||||||
pnginfo = None
|
|
||||||
|
|
||||||
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
|
||||||
|
|
||||||
if save_to_dirs:
|
if save_to_dirs:
|
||||||
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt)
|
dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
|
||||||
path = os.path.join(path, dirname)
|
path = os.path.join(path, dirname)
|
||||||
|
|
||||||
os.makedirs(path, exist_ok=True)
|
os.makedirs(path, exist_ok=True)
|
||||||
|
|
||||||
if forced_filename is None:
|
if forced_filename is None:
|
||||||
basecount = get_next_sequence_number(path, basename)
|
if short_filename or seed is None:
|
||||||
fullfn = "a.png"
|
file_decoration = ""
|
||||||
fullfn_without_extension = "a"
|
elif opts.save_to_dirs:
|
||||||
for i in range(500):
|
file_decoration = opts.samples_filename_pattern or "[seed]"
|
||||||
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
else:
|
||||||
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
||||||
fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}")
|
|
||||||
if not os.path.exists(fullfn):
|
add_number = opts.save_images_add_number or file_decoration == ''
|
||||||
break
|
|
||||||
|
if file_decoration != "" and add_number:
|
||||||
|
file_decoration = "-" + file_decoration
|
||||||
|
|
||||||
|
file_decoration = namegen.apply(file_decoration) + suffix
|
||||||
|
|
||||||
|
if add_number:
|
||||||
|
basecount = get_next_sequence_number(path, basename)
|
||||||
|
fullfn = None
|
||||||
|
for i in range(500):
|
||||||
|
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
||||||
|
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
||||||
|
if not os.path.exists(fullfn):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
|
||||||
else:
|
else:
|
||||||
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
|
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
|
||||||
fullfn_without_extension = os.path.join(path, forced_filename)
|
|
||||||
|
|
||||||
def exif_bytes():
|
pnginfo = existing_info or {}
|
||||||
return piexif.dump({
|
if info is not None:
|
||||||
"Exif": {
|
pnginfo[pnginfo_section_name] = info
|
||||||
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
|
|
||||||
},
|
|
||||||
})
|
|
||||||
|
|
||||||
if extension.lower() in ("jpg", "jpeg", "webp"):
|
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
|
||||||
image.save(fullfn, quality=opts.jpeg_quality)
|
script_callbacks.before_image_saved_callback(params)
|
||||||
if opts.enable_pnginfo and info is not None:
|
|
||||||
piexif.insert(exif_bytes(), fullfn)
|
image = params.image
|
||||||
else:
|
fullfn = params.filename
|
||||||
image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo)
|
info = params.pnginfo.get(pnginfo_section_name, None)
|
||||||
|
|
||||||
|
def _atomically_save_image(image_to_save, filename_without_extension, extension):
|
||||||
|
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
|
||||||
|
temp_file_path = filename_without_extension + ".tmp"
|
||||||
|
image_format = Image.registered_extensions()[extension]
|
||||||
|
|
||||||
|
if extension.lower() == '.png':
|
||||||
|
pnginfo_data = PngImagePlugin.PngInfo()
|
||||||
|
if opts.enable_pnginfo:
|
||||||
|
for k, v in params.pnginfo.items():
|
||||||
|
pnginfo_data.add_text(k, str(v))
|
||||||
|
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
|
||||||
|
|
||||||
|
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
||||||
|
if image_to_save.mode == 'RGBA':
|
||||||
|
image_to_save = image_to_save.convert("RGB")
|
||||||
|
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||||
|
|
||||||
|
if opts.enable_pnginfo and info is not None:
|
||||||
|
exif_bytes = piexif.dump({
|
||||||
|
"Exif": {
|
||||||
|
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
|
||||||
|
},
|
||||||
|
})
|
||||||
|
|
||||||
|
piexif.insert(exif_bytes, temp_file_path)
|
||||||
|
else:
|
||||||
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
||||||
|
|
||||||
|
# atomically rename the file with correct extension
|
||||||
|
os.replace(temp_file_path, filename_without_extension + extension)
|
||||||
|
|
||||||
|
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
||||||
|
_atomically_save_image(image, fullfn_without_extension, extension)
|
||||||
|
|
||||||
|
image.already_saved_as = fullfn
|
||||||
|
|
||||||
target_side_length = 4000
|
target_side_length = 4000
|
||||||
oversize = image.width > target_side_length or image.height > target_side_length
|
oversize = image.width > target_side_length or image.height > target_side_length
|
||||||
@ -417,12 +578,80 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
elif oversize:
|
elif oversize:
|
||||||
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
|
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
|
||||||
|
|
||||||
image.save(fullfn_without_extension + ".jpg", quality=opts.jpeg_quality)
|
_atomically_save_image(image, fullfn_without_extension, ".jpg")
|
||||||
if opts.enable_pnginfo and info is not None:
|
|
||||||
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
|
|
||||||
|
|
||||||
if opts.save_txt and info is not None:
|
if opts.save_txt and info is not None:
|
||||||
with open(f"{fullfn_without_extension}.txt", "w", encoding="utf8") as file:
|
txt_fullfn = f"{fullfn_without_extension}.txt"
|
||||||
|
with open(txt_fullfn, "w", encoding="utf8") as file:
|
||||||
file.write(info + "\n")
|
file.write(info + "\n")
|
||||||
|
else:
|
||||||
|
txt_fullfn = None
|
||||||
|
|
||||||
|
script_callbacks.image_saved_callback(params)
|
||||||
|
|
||||||
|
return fullfn, txt_fullfn
|
||||||
|
|
||||||
|
|
||||||
|
def read_info_from_image(image):
|
||||||
|
items = image.info or {}
|
||||||
|
|
||||||
|
geninfo = items.pop('parameters', None)
|
||||||
|
|
||||||
|
if "exif" in items:
|
||||||
|
exif = piexif.load(items["exif"])
|
||||||
|
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
||||||
|
try:
|
||||||
|
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
||||||
|
except ValueError:
|
||||||
|
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
||||||
|
|
||||||
|
items['exif comment'] = exif_comment
|
||||||
|
geninfo = exif_comment
|
||||||
|
|
||||||
|
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
||||||
|
'loop', 'background', 'timestamp', 'duration']:
|
||||||
|
items.pop(field, None)
|
||||||
|
|
||||||
|
if items.get("Software", None) == "NovelAI":
|
||||||
|
try:
|
||||||
|
json_info = json.loads(items["Comment"])
|
||||||
|
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
|
||||||
|
|
||||||
|
geninfo = f"""{items["Description"]}
|
||||||
|
Negative prompt: {json_info["uc"]}
|
||||||
|
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
|
||||||
|
except Exception:
|
||||||
|
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
return geninfo, items
|
||||||
|
|
||||||
|
|
||||||
|
def image_data(data):
|
||||||
|
try:
|
||||||
|
image = Image.open(io.BytesIO(data))
|
||||||
|
textinfo, _ = read_info_from_image(image)
|
||||||
|
return textinfo, None
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
try:
|
||||||
|
text = data.decode('utf8')
|
||||||
|
assert len(text) < 10000
|
||||||
|
return text, None
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return '', None
|
||||||
|
|
||||||
|
|
||||||
|
def flatten(img, bgcolor):
|
||||||
|
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
|
||||||
|
|
||||||
|
if img.mode == "RGBA":
|
||||||
|
background = Image.new('RGBA', img.size, bgcolor)
|
||||||
|
background.paste(img, mask=img)
|
||||||
|
img = background
|
||||||
|
|
||||||
|
return img.convert('RGB')
|
||||||
|
@ -4,9 +4,9 @@ import sys
|
|||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageOps, ImageChops
|
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
|
||||||
|
|
||||||
from modules import devices
|
from modules import devices, sd_samplers
|
||||||
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -19,22 +19,28 @@ import modules.scripts
|
|||||||
def process_batch(p, input_dir, output_dir, args):
|
def process_batch(p, input_dir, output_dir, args):
|
||||||
processing.fix_seed(p)
|
processing.fix_seed(p)
|
||||||
|
|
||||||
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
|
images = shared.listfiles(input_dir)
|
||||||
|
|
||||||
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||||
|
|
||||||
|
save_normally = output_dir == ''
|
||||||
|
|
||||||
p.do_not_save_grid = True
|
p.do_not_save_grid = True
|
||||||
p.do_not_save_samples = True
|
p.do_not_save_samples = not save_normally
|
||||||
|
|
||||||
state.job_count = len(images) * p.n_iter
|
state.job_count = len(images) * p.n_iter
|
||||||
|
|
||||||
for i, image in enumerate(images):
|
for i, image in enumerate(images):
|
||||||
state.job = f"{i+1} out of {len(images)}"
|
state.job = f"{i+1} out of {len(images)}"
|
||||||
|
if state.skipped:
|
||||||
|
state.skipped = False
|
||||||
|
|
||||||
if state.interrupted:
|
if state.interrupted:
|
||||||
break
|
break
|
||||||
|
|
||||||
img = Image.open(image)
|
img = Image.open(image)
|
||||||
|
# Use the EXIF orientation of photos taken by smartphones.
|
||||||
|
img = ImageOps.exif_transpose(img)
|
||||||
p.init_images = [img] * p.batch_size
|
p.init_images = [img] * p.batch_size
|
||||||
|
|
||||||
proc = modules.scripts.scripts_img2img.run(p, *args)
|
proc = modules.scripts.scripts_img2img.run(p, *args)
|
||||||
@ -48,27 +54,49 @@ def process_batch(p, input_dir, output_dir, args):
|
|||||||
left, right = os.path.splitext(filename)
|
left, right = os.path.splitext(filename)
|
||||||
filename = f"{left}-{n}{right}"
|
filename = f"{left}-{n}{right}"
|
||||||
|
|
||||||
processed_image.save(os.path.join(output_dir, filename))
|
if not save_normally:
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
processed_image.save(os.path.join(output_dir, filename))
|
||||||
|
|
||||||
|
|
||||||
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_with_mask_orig, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
||||||
is_inpaint = mode == 1
|
is_inpaint = mode == 1
|
||||||
is_batch = mode == 2
|
is_batch = mode == 2
|
||||||
|
|
||||||
if is_inpaint:
|
if is_inpaint:
|
||||||
|
# Drawn mask
|
||||||
if mask_mode == 0:
|
if mask_mode == 0:
|
||||||
image = init_img_with_mask['image']
|
is_mask_sketch = isinstance(init_img_with_mask, dict)
|
||||||
mask = init_img_with_mask['mask']
|
is_mask_paint = not is_mask_sketch
|
||||||
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
if is_mask_sketch:
|
||||||
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
# Sketch: mask iff. not transparent
|
||||||
image = image.convert('RGB')
|
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
|
||||||
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
||||||
|
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
||||||
|
else:
|
||||||
|
# Color-sketch: mask iff. painted over
|
||||||
|
image = init_img_with_mask
|
||||||
|
orig = init_img_with_mask_orig or init_img_with_mask
|
||||||
|
pred = np.any(np.array(image) != np.array(orig), axis=-1)
|
||||||
|
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
|
||||||
|
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
|
||||||
|
blur = ImageFilter.GaussianBlur(mask_blur)
|
||||||
|
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
|
||||||
|
|
||||||
|
image = image.convert("RGB")
|
||||||
|
# Uploaded mask
|
||||||
else:
|
else:
|
||||||
image = init_img_inpaint
|
image = init_img_inpaint
|
||||||
mask = init_mask_inpaint
|
mask = init_mask_inpaint
|
||||||
|
# No mask
|
||||||
else:
|
else:
|
||||||
image = init_img
|
image = init_img
|
||||||
mask = None
|
mask = None
|
||||||
|
|
||||||
|
# Use the EXIF orientation of photos taken by smartphones.
|
||||||
|
if image is not None:
|
||||||
|
image = ImageOps.exif_transpose(image)
|
||||||
|
|
||||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||||
|
|
||||||
p = StableDiffusionProcessingImg2Img(
|
p = StableDiffusionProcessingImg2Img(
|
||||||
@ -84,7 +112,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
seed_resize_from_h=seed_resize_from_h,
|
seed_resize_from_h=seed_resize_from_h,
|
||||||
seed_resize_from_w=seed_resize_from_w,
|
seed_resize_from_w=seed_resize_from_w,
|
||||||
seed_enable_extras=seed_enable_extras,
|
seed_enable_extras=seed_enable_extras,
|
||||||
sampler_index=sampler_index,
|
sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_iter=n_iter,
|
n_iter=n_iter,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
@ -103,7 +131,12 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
inpaint_full_res_padding=inpaint_full_res_padding,
|
inpaint_full_res_padding=inpaint_full_res_padding,
|
||||||
inpainting_mask_invert=inpainting_mask_invert,
|
inpainting_mask_invert=inpainting_mask_invert,
|
||||||
)
|
)
|
||||||
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
|
||||||
|
p.scripts = modules.scripts.scripts_txt2img
|
||||||
|
p.script_args = args
|
||||||
|
|
||||||
|
if shared.cmd_opts.enable_console_prompts:
|
||||||
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
||||||
|
|
||||||
p.extra_generation_params["Mask blur"] = mask_blur
|
p.extra_generation_params["Mask blur"] = mask_blur
|
||||||
|
|
||||||
@ -118,10 +151,15 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||||||
if processed is None:
|
if processed is None:
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
|
p.close()
|
||||||
|
|
||||||
shared.total_tqdm.clear()
|
shared.total_tqdm.clear()
|
||||||
|
|
||||||
generation_info_js = processed.js()
|
generation_info_js = processed.js()
|
||||||
if opts.samples_log_stdout:
|
if opts.samples_log_stdout:
|
||||||
print(generation_info_js)
|
print(generation_info_js)
|
||||||
|
|
||||||
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|
if opts.do_not_show_images:
|
||||||
|
processed.images = []
|
||||||
|
|
||||||
|
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)
|
||||||
|
5
modules/import_hook.py
Normal file
5
modules/import_hook.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
import sys
|
||||||
|
|
||||||
|
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
|
||||||
|
if "--xformers" not in "".join(sys.argv):
|
||||||
|
sys.modules["xformers"] = None
|
@ -1,4 +1,3 @@
|
|||||||
import contextlib
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
@ -11,25 +10,27 @@ from torchvision import transforms
|
|||||||
from torchvision.transforms.functional import InterpolationMode
|
from torchvision.transforms.functional import InterpolationMode
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules import devices, paths, lowvram
|
from modules import devices, paths, lowvram, modelloader
|
||||||
|
|
||||||
blip_image_eval_size = 384
|
blip_image_eval_size = 384
|
||||||
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
|
|
||||||
clip_model_name = 'ViT-L/14'
|
clip_model_name = 'ViT-L/14'
|
||||||
|
|
||||||
Category = namedtuple("Category", ["name", "topn", "items"])
|
Category = namedtuple("Category", ["name", "topn", "items"])
|
||||||
|
|
||||||
re_topn = re.compile(r"\.top(\d+)\.")
|
re_topn = re.compile(r"\.top(\d+)\.")
|
||||||
|
|
||||||
|
|
||||||
class InterrogateModels:
|
class InterrogateModels:
|
||||||
blip_model = None
|
blip_model = None
|
||||||
clip_model = None
|
clip_model = None
|
||||||
clip_preprocess = None
|
clip_preprocess = None
|
||||||
categories = None
|
categories = None
|
||||||
dtype = None
|
dtype = None
|
||||||
|
running_on_cpu = None
|
||||||
|
|
||||||
def __init__(self, content_dir):
|
def __init__(self, content_dir):
|
||||||
self.categories = []
|
self.categories = []
|
||||||
|
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
|
||||||
|
|
||||||
if os.path.exists(content_dir):
|
if os.path.exists(content_dir):
|
||||||
for filename in os.listdir(content_dir):
|
for filename in os.listdir(content_dir):
|
||||||
@ -44,7 +45,14 @@ class InterrogateModels:
|
|||||||
def load_blip_model(self):
|
def load_blip_model(self):
|
||||||
import models.blip
|
import models.blip
|
||||||
|
|
||||||
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
|
files = modelloader.load_models(
|
||||||
|
model_path=os.path.join(paths.models_path, "BLIP"),
|
||||||
|
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
|
||||||
|
ext_filter=[".pth"],
|
||||||
|
download_name='model_base_caption_capfilt_large.pth',
|
||||||
|
)
|
||||||
|
|
||||||
|
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
|
||||||
blip_model.eval()
|
blip_model.eval()
|
||||||
|
|
||||||
return blip_model
|
return blip_model
|
||||||
@ -52,26 +60,30 @@ class InterrogateModels:
|
|||||||
def load_clip_model(self):
|
def load_clip_model(self):
|
||||||
import clip
|
import clip
|
||||||
|
|
||||||
model, preprocess = clip.load(clip_model_name)
|
if self.running_on_cpu:
|
||||||
|
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
|
||||||
|
else:
|
||||||
|
model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
model = model.to(shared.device)
|
model = model.to(devices.device_interrogate)
|
||||||
|
|
||||||
return model, preprocess
|
return model, preprocess
|
||||||
|
|
||||||
def load(self):
|
def load(self):
|
||||||
if self.blip_model is None:
|
if self.blip_model is None:
|
||||||
self.blip_model = self.load_blip_model()
|
self.blip_model = self.load_blip_model()
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half and not self.running_on_cpu:
|
||||||
self.blip_model = self.blip_model.half()
|
self.blip_model = self.blip_model.half()
|
||||||
|
|
||||||
self.blip_model = self.blip_model.to(shared.device)
|
self.blip_model = self.blip_model.to(devices.device_interrogate)
|
||||||
|
|
||||||
if self.clip_model is None:
|
if self.clip_model is None:
|
||||||
self.clip_model, self.clip_preprocess = self.load_clip_model()
|
self.clip_model, self.clip_preprocess = self.load_clip_model()
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half and not self.running_on_cpu:
|
||||||
self.clip_model = self.clip_model.half()
|
self.clip_model = self.clip_model.half()
|
||||||
|
|
||||||
self.clip_model = self.clip_model.to(shared.device)
|
self.clip_model = self.clip_model.to(devices.device_interrogate)
|
||||||
|
|
||||||
self.dtype = next(self.clip_model.parameters()).dtype
|
self.dtype = next(self.clip_model.parameters()).dtype
|
||||||
|
|
||||||
@ -98,11 +110,11 @@ class InterrogateModels:
|
|||||||
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
|
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
|
||||||
|
|
||||||
top_count = min(top_count, len(text_array))
|
top_count = min(top_count, len(text_array))
|
||||||
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
|
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
|
||||||
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
|
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
|
||||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||||
|
|
||||||
similarity = torch.zeros((1, len(text_array))).to(shared.device)
|
similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
|
||||||
for i in range(image_features.shape[0]):
|
for i in range(image_features.shape[0]):
|
||||||
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
||||||
similarity /= image_features.shape[0]
|
similarity /= image_features.shape[0]
|
||||||
@ -115,7 +127,7 @@ class InterrogateModels:
|
|||||||
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||||
])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
|
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
|
||||||
@ -123,8 +135,9 @@ class InterrogateModels:
|
|||||||
return caption[0]
|
return caption[0]
|
||||||
|
|
||||||
def interrogate(self, pil_image):
|
def interrogate(self, pil_image):
|
||||||
res = None
|
res = ""
|
||||||
|
shared.state.begin()
|
||||||
|
shared.state.job = 'interrogate'
|
||||||
try:
|
try:
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
@ -139,11 +152,10 @@ class InterrogateModels:
|
|||||||
|
|
||||||
res = caption
|
res = caption
|
||||||
|
|
||||||
cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
|
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||||
|
|
||||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
with torch.no_grad(), devices.autocast():
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
||||||
image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
|
|
||||||
|
|
||||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
|
|
||||||
@ -155,13 +167,17 @@ class InterrogateModels:
|
|||||||
for name, topn, items in self.categories:
|
for name, topn, items in self.categories:
|
||||||
matches = self.rank(image_features, items, top_count=topn)
|
matches = self.rank(image_features, items, top_count=topn)
|
||||||
for match, score in matches:
|
for match, score in matches:
|
||||||
res += ", " + match
|
if shared.opts.interrogate_return_ranks:
|
||||||
|
res += f", ({match}:{score/100:.3f})"
|
||||||
|
else:
|
||||||
|
res += ", " + match
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error interrogating", file=sys.stderr)
|
print("Error interrogating", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
res += "<error>"
|
res += "<error>"
|
||||||
|
|
||||||
self.unload()
|
self.unload()
|
||||||
|
shared.state.end()
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
37
modules/localization.py
Normal file
37
modules/localization.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
|
||||||
|
localizations = {}
|
||||||
|
|
||||||
|
|
||||||
|
def list_localizations(dirname):
|
||||||
|
localizations.clear()
|
||||||
|
|
||||||
|
for file in os.listdir(dirname):
|
||||||
|
fn, ext = os.path.splitext(file)
|
||||||
|
if ext.lower() != ".json":
|
||||||
|
continue
|
||||||
|
|
||||||
|
localizations[fn] = os.path.join(dirname, file)
|
||||||
|
|
||||||
|
from modules import scripts
|
||||||
|
for file in scripts.list_scripts("localizations", ".json"):
|
||||||
|
fn, ext = os.path.splitext(file.filename)
|
||||||
|
localizations[fn] = file.path
|
||||||
|
|
||||||
|
|
||||||
|
def localization_js(current_localization_name):
|
||||||
|
fn = localizations.get(current_localization_name, None)
|
||||||
|
data = {}
|
||||||
|
if fn is not None:
|
||||||
|
try:
|
||||||
|
with open(fn, "r", encoding="utf8") as file:
|
||||||
|
data = json.load(file)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error loading localization from {fn}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
return f"var localization = {json.dumps(data)}\n"
|
@ -1,9 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
from modules.devices import get_optimal_device
|
from modules import devices
|
||||||
|
|
||||||
module_in_gpu = None
|
module_in_gpu = None
|
||||||
cpu = torch.device("cpu")
|
cpu = torch.device("cpu")
|
||||||
device = gpu = get_optimal_device()
|
|
||||||
|
|
||||||
|
|
||||||
def send_everything_to_cpu():
|
def send_everything_to_cpu():
|
||||||
@ -33,34 +32,49 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||||||
if module_in_gpu is not None:
|
if module_in_gpu is not None:
|
||||||
module_in_gpu.to(cpu)
|
module_in_gpu.to(cpu)
|
||||||
|
|
||||||
module.to(gpu)
|
module.to(devices.device)
|
||||||
module_in_gpu = module
|
module_in_gpu = module
|
||||||
|
|
||||||
# see below for register_forward_pre_hook;
|
# see below for register_forward_pre_hook;
|
||||||
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
|
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
|
||||||
# useless here, and we just replace those methods
|
# useless here, and we just replace those methods
|
||||||
def first_stage_model_encode_wrap(self, encoder, x):
|
|
||||||
send_me_to_gpu(self, None)
|
|
||||||
return encoder(x)
|
|
||||||
|
|
||||||
def first_stage_model_decode_wrap(self, decoder, z):
|
first_stage_model = sd_model.first_stage_model
|
||||||
send_me_to_gpu(self, None)
|
first_stage_model_encode = sd_model.first_stage_model.encode
|
||||||
return decoder(z)
|
first_stage_model_decode = sd_model.first_stage_model.decode
|
||||||
|
|
||||||
# remove three big modules, cond, first_stage, and unet from the model and then
|
def first_stage_model_encode_wrap(x):
|
||||||
|
send_me_to_gpu(first_stage_model, None)
|
||||||
|
return first_stage_model_encode(x)
|
||||||
|
|
||||||
|
def first_stage_model_decode_wrap(z):
|
||||||
|
send_me_to_gpu(first_stage_model, None)
|
||||||
|
return first_stage_model_decode(z)
|
||||||
|
|
||||||
|
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
|
||||||
|
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||||
|
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
|
||||||
|
|
||||||
|
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
|
||||||
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
||||||
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
|
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
|
||||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
|
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
|
||||||
sd_model.to(device)
|
sd_model.to(devices.device)
|
||||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
|
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
|
||||||
|
|
||||||
# register hooks for those the first two models
|
# register hooks for those the first three models
|
||||||
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
||||||
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x)
|
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
|
||||||
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z)
|
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
|
||||||
|
if sd_model.depth_model:
|
||||||
|
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||||
|
|
||||||
|
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||||
|
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
|
||||||
|
del sd_model.cond_stage_model.transformer
|
||||||
|
|
||||||
if use_medvram:
|
if use_medvram:
|
||||||
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||||
else:
|
else:
|
||||||
@ -70,7 +84,7 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||||||
# so that only one of them is in GPU at a time
|
# so that only one of them is in GPU at a time
|
||||||
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
|
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
|
||||||
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
|
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
|
||||||
sd_model.model.to(device)
|
sd_model.model.to(devices.device)
|
||||||
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
|
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
|
||||||
|
|
||||||
# install hooks for bits of third model
|
# install hooks for bits of third model
|
||||||
|
@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
|
|||||||
ratio_processing = processing_width / processing_height
|
ratio_processing = processing_width / processing_height
|
||||||
|
|
||||||
if ratio_crop_region > ratio_processing:
|
if ratio_crop_region > ratio_processing:
|
||||||
desired_height = (x2 - x1) * ratio_processing
|
desired_height = (x2 - x1) / ratio_processing
|
||||||
desired_height_diff = int(desired_height - (y2-y1))
|
desired_height_diff = int(desired_height - (y2-y1))
|
||||||
y1 -= desired_height_diff//2
|
y1 -= desired_height_diff//2
|
||||||
y2 += desired_height_diff - desired_height_diff//2
|
y2 += desired_height_diff - desired_height_diff//2
|
||||||
|
@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
|
|||||||
def read(self):
|
def read(self):
|
||||||
if not self.disabled:
|
if not self.disabled:
|
||||||
free, total = torch.cuda.mem_get_info()
|
free, total = torch.cuda.mem_get_info()
|
||||||
|
self.data["free"] = free
|
||||||
self.data["total"] = total
|
self.data["total"] = total
|
||||||
|
|
||||||
torch_stats = torch.cuda.memory_stats(self.device)
|
torch_stats = torch.cuda.memory_stats(self.device)
|
||||||
|
self.data["active"] = torch_stats["active.all.current"]
|
||||||
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
|
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
|
||||||
|
self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
|
||||||
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
|
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
|
||||||
self.data["system_peak"] = total - self.data["min_free"]
|
self.data["system_peak"] = total - self.data["min_free"]
|
||||||
|
|
||||||
|
@ -5,7 +5,6 @@ import importlib
|
|||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.upscaler import Upscaler
|
from modules.upscaler import Upscaler
|
||||||
from modules.paths import script_path, models_path
|
from modules.paths import script_path, models_path
|
||||||
@ -43,7 +42,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
|
|||||||
for place in places:
|
for place in places:
|
||||||
if os.path.exists(place):
|
if os.path.exists(place):
|
||||||
for file in glob.iglob(place + '**/**', recursive=True):
|
for file in glob.iglob(place + '**/**', recursive=True):
|
||||||
full_path = os.path.join(place, file)
|
full_path = file
|
||||||
if os.path.isdir(full_path):
|
if os.path.isdir(full_path):
|
||||||
continue
|
continue
|
||||||
if len(ext_filter) != 0:
|
if len(ext_filter) != 0:
|
||||||
@ -83,9 +82,13 @@ def cleanup_models():
|
|||||||
src_path = models_path
|
src_path = models_path
|
||||||
dest_path = os.path.join(models_path, "Stable-diffusion")
|
dest_path = os.path.join(models_path, "Stable-diffusion")
|
||||||
move_files(src_path, dest_path, ".ckpt")
|
move_files(src_path, dest_path, ".ckpt")
|
||||||
|
move_files(src_path, dest_path, ".safetensors")
|
||||||
src_path = os.path.join(root_path, "ESRGAN")
|
src_path = os.path.join(root_path, "ESRGAN")
|
||||||
dest_path = os.path.join(models_path, "ESRGAN")
|
dest_path = os.path.join(models_path, "ESRGAN")
|
||||||
move_files(src_path, dest_path)
|
move_files(src_path, dest_path)
|
||||||
|
src_path = os.path.join(models_path, "BSRGAN")
|
||||||
|
dest_path = os.path.join(models_path, "ESRGAN")
|
||||||
|
move_files(src_path, dest_path, ".pth")
|
||||||
src_path = os.path.join(root_path, "gfpgan")
|
src_path = os.path.join(root_path, "gfpgan")
|
||||||
dest_path = os.path.join(models_path, "GFPGAN")
|
dest_path = os.path.join(models_path, "GFPGAN")
|
||||||
move_files(src_path, dest_path)
|
move_files(src_path, dest_path)
|
||||||
@ -120,21 +123,45 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def load_upscalers():
|
builtin_upscaler_classes = []
|
||||||
datas = []
|
forbidden_upscaler_classes = set()
|
||||||
|
|
||||||
|
|
||||||
|
def list_builtin_upscalers():
|
||||||
|
load_upscalers()
|
||||||
|
|
||||||
|
builtin_upscaler_classes.clear()
|
||||||
|
builtin_upscaler_classes.extend(Upscaler.__subclasses__())
|
||||||
|
|
||||||
|
|
||||||
|
def forbid_loaded_nonbuiltin_upscalers():
|
||||||
for cls in Upscaler.__subclasses__():
|
for cls in Upscaler.__subclasses__():
|
||||||
|
if cls not in builtin_upscaler_classes:
|
||||||
|
forbidden_upscaler_classes.add(cls)
|
||||||
|
|
||||||
|
|
||||||
|
def load_upscalers():
|
||||||
|
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
|
||||||
|
# so we'll try to import any _model.py files before looking in __subclasses__
|
||||||
|
modules_dir = os.path.join(shared.script_path, "modules")
|
||||||
|
for file in os.listdir(modules_dir):
|
||||||
|
if "_model.py" in file:
|
||||||
|
model_name = file.replace("_model.py", "")
|
||||||
|
full_model = f"modules.{model_name}_model"
|
||||||
|
try:
|
||||||
|
importlib.import_module(full_model)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
datas = []
|
||||||
|
commandline_options = vars(shared.cmd_opts)
|
||||||
|
for cls in Upscaler.__subclasses__():
|
||||||
|
if cls in forbidden_upscaler_classes:
|
||||||
|
continue
|
||||||
|
|
||||||
name = cls.__name__
|
name = cls.__name__
|
||||||
module_name = cls.__module__
|
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
|
||||||
module = importlib.import_module(module_name)
|
scaler = cls(commandline_options.get(cmd_name, None))
|
||||||
class_ = getattr(module, name)
|
datas += scaler.scalers
|
||||||
cmd_name = f"{name.lower().replace('upscaler', '')}-models-path"
|
|
||||||
opt_string = None
|
|
||||||
try:
|
|
||||||
opt_string = shared.opts.__getattr__(cmd_name)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
scaler = class_(opt_string)
|
|
||||||
for child in scaler.scalers:
|
|
||||||
datas.append(child)
|
|
||||||
|
|
||||||
shared.sd_upscalers = datas
|
shared.sd_upscalers = datas
|
||||||
|
26
modules/ngrok.py
Normal file
26
modules/ngrok.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
from pyngrok import ngrok, conf, exception
|
||||||
|
|
||||||
|
def connect(token, port, region):
|
||||||
|
account = None
|
||||||
|
if token is None:
|
||||||
|
token = 'None'
|
||||||
|
else:
|
||||||
|
if ':' in token:
|
||||||
|
# token = authtoken:username:password
|
||||||
|
account = token.split(':')[1] + ':' + token.split(':')[-1]
|
||||||
|
token = token.split(':')[0]
|
||||||
|
|
||||||
|
config = conf.PyngrokConfig(
|
||||||
|
auth_token=token, region=region
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
if account is None:
|
||||||
|
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
|
||||||
|
else:
|
||||||
|
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
|
||||||
|
except exception.PyngrokNgrokError:
|
||||||
|
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
||||||
|
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
||||||
|
else:
|
||||||
|
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
|
||||||
|
'You can use this link after the launch is complete.')
|
@ -1,6 +1,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import modules.safe
|
||||||
|
|
||||||
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
||||||
models_path = os.path.join(script_path, "models")
|
models_path = os.path.join(script_path, "models")
|
||||||
@ -8,10 +9,11 @@ sys.path.insert(0, script_path)
|
|||||||
|
|
||||||
# search for directory of stable diffusion in following places
|
# search for directory of stable diffusion in following places
|
||||||
sd_path = None
|
sd_path = None
|
||||||
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)]
|
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion-stability-ai'), '.', os.path.dirname(script_path)]
|
||||||
for possible_sd_path in possible_sd_paths:
|
for possible_sd_path in possible_sd_paths:
|
||||||
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
||||||
sd_path = os.path.abspath(possible_sd_path)
|
sd_path = os.path.abspath(possible_sd_path)
|
||||||
|
break
|
||||||
|
|
||||||
assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths)
|
assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths)
|
||||||
|
|
||||||
@ -20,7 +22,6 @@ path_dirs = [
|
|||||||
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
|
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
|
||||||
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
||||||
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
||||||
(os.path.join(sd_path, '../latent-diffusion'), 'LDSR.py', 'LDSR', []),
|
|
||||||
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import contextlib
|
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -10,18 +10,24 @@ from PIL import Image, ImageFilter, ImageOps
|
|||||||
import random
|
import random
|
||||||
import cv2
|
import cv2
|
||||||
from skimage import exposure
|
from skimage import exposure
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
import modules.sd_hijack
|
import modules.sd_hijack
|
||||||
from modules import devices, prompt_parser, masking
|
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks
|
||||||
from modules.sd_hijack import model_hijack
|
from modules.sd_hijack import model_hijack
|
||||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
import modules.face_restoration
|
import modules.face_restoration
|
||||||
import modules.images as images
|
import modules.images as images
|
||||||
import modules.styles
|
import modules.styles
|
||||||
|
import modules.sd_models as sd_models
|
||||||
|
import modules.sd_vae as sd_vae
|
||||||
import logging
|
import logging
|
||||||
|
from ldm.data.util import AddMiDaS
|
||||||
|
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||||
|
|
||||||
|
from einops import repeat, rearrange
|
||||||
|
from blendmodes.blend import blendLayers, BlendType
|
||||||
|
|
||||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||||
opt_C = 4
|
opt_C = 4
|
||||||
@ -34,35 +40,81 @@ def setup_color_correction(image):
|
|||||||
return correction_target
|
return correction_target
|
||||||
|
|
||||||
|
|
||||||
def apply_color_correction(correction, image):
|
def apply_color_correction(correction, original_image):
|
||||||
logging.info("Applying color correction.")
|
logging.info("Applying color correction.")
|
||||||
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
||||||
cv2.cvtColor(
|
cv2.cvtColor(
|
||||||
np.asarray(image),
|
np.asarray(original_image),
|
||||||
cv2.COLOR_RGB2LAB
|
cv2.COLOR_RGB2LAB
|
||||||
),
|
),
|
||||||
correction,
|
correction,
|
||||||
channel_axis=2
|
channel_axis=2
|
||||||
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
||||||
|
|
||||||
|
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def apply_overlay(image, paste_loc, index, overlays):
|
||||||
|
if overlays is None or index >= len(overlays):
|
||||||
|
return image
|
||||||
|
|
||||||
|
overlay = overlays[index]
|
||||||
|
|
||||||
|
if paste_loc is not None:
|
||||||
|
x, y, w, h = paste_loc
|
||||||
|
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
||||||
|
image = images.resize_image(1, image, w, h)
|
||||||
|
base_image.paste(image, (x, y))
|
||||||
|
image = base_image
|
||||||
|
|
||||||
|
image = image.convert('RGBA')
|
||||||
|
image.alpha_composite(overlay)
|
||||||
|
image = image.convert('RGB')
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionProcessing:
|
def txt2img_image_conditioning(sd_model, x, width, height):
|
||||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
|
if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
|
||||||
|
# Dummy zero conditioning if we're not using inpainting model.
|
||||||
|
# Still takes up a bit of memory, but no encoder call.
|
||||||
|
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||||
|
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
||||||
|
|
||||||
|
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
||||||
|
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
||||||
|
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
|
||||||
|
|
||||||
|
# Add the fake full 1s mask to the first dimension.
|
||||||
|
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
||||||
|
image_conditioning = image_conditioning.to(x.dtype)
|
||||||
|
|
||||||
|
return image_conditioning
|
||||||
|
|
||||||
|
|
||||||
|
class StableDiffusionProcessing():
|
||||||
|
"""
|
||||||
|
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||||
|
"""
|
||||||
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
|
||||||
|
if sampler_index is not None:
|
||||||
|
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||||
|
|
||||||
self.sd_model = sd_model
|
self.sd_model = sd_model
|
||||||
self.outpath_samples: str = outpath_samples
|
self.outpath_samples: str = outpath_samples
|
||||||
self.outpath_grids: str = outpath_grids
|
self.outpath_grids: str = outpath_grids
|
||||||
self.prompt: str = prompt
|
self.prompt: str = prompt
|
||||||
self.prompt_for_display: str = None
|
self.prompt_for_display: str = None
|
||||||
self.negative_prompt: str = (negative_prompt or "")
|
self.negative_prompt: str = (negative_prompt or "")
|
||||||
self.styles: str = styles
|
self.styles: list = styles or []
|
||||||
self.seed: int = seed
|
self.seed: int = seed
|
||||||
self.subseed: int = subseed
|
self.subseed: int = subseed
|
||||||
self.subseed_strength: float = subseed_strength
|
self.subseed_strength: float = subseed_strength
|
||||||
self.seed_resize_from_h: int = seed_resize_from_h
|
self.seed_resize_from_h: int = seed_resize_from_h
|
||||||
self.seed_resize_from_w: int = seed_resize_from_w
|
self.seed_resize_from_w: int = seed_resize_from_w
|
||||||
self.sampler_index: int = sampler_index
|
self.sampler_name: str = sampler_name
|
||||||
self.batch_size: int = batch_size
|
self.batch_size: int = batch_size
|
||||||
self.n_iter: int = n_iter
|
self.n_iter: int = n_iter
|
||||||
self.steps: int = steps
|
self.steps: int = steps
|
||||||
@ -76,31 +128,120 @@ class StableDiffusionProcessing:
|
|||||||
self.extra_generation_params: dict = extra_generation_params or {}
|
self.extra_generation_params: dict = extra_generation_params or {}
|
||||||
self.overlay_images = overlay_images
|
self.overlay_images = overlay_images
|
||||||
self.eta = eta
|
self.eta = eta
|
||||||
|
self.do_not_reload_embeddings = do_not_reload_embeddings
|
||||||
self.paste_to = None
|
self.paste_to = None
|
||||||
self.color_corrections = None
|
self.color_corrections = None
|
||||||
self.denoising_strength: float = 0
|
self.denoising_strength: float = denoising_strength
|
||||||
self.sampler_noise_scheduler_override = None
|
self.sampler_noise_scheduler_override = None
|
||||||
self.ddim_discretize = opts.ddim_discretize
|
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
|
||||||
self.s_churn = opts.s_churn
|
self.s_churn = s_churn or opts.s_churn
|
||||||
self.s_tmin = opts.s_tmin
|
self.s_tmin = s_tmin or opts.s_tmin
|
||||||
self.s_tmax = float('inf') # not representable as a standard ui option
|
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
||||||
self.s_noise = opts.s_noise
|
self.s_noise = s_noise or opts.s_noise
|
||||||
|
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
||||||
|
self.override_settings_restore_afterwards = override_settings_restore_afterwards
|
||||||
|
self.is_using_inpainting_conditioning = False
|
||||||
|
|
||||||
if not seed_enable_extras:
|
if not seed_enable_extras:
|
||||||
self.subseed = -1
|
self.subseed = -1
|
||||||
self.subseed_strength = 0
|
self.subseed_strength = 0
|
||||||
self.seed_resize_from_h = 0
|
self.seed_resize_from_h = 0
|
||||||
self.seed_resize_from_w = 0
|
self.seed_resize_from_w = 0
|
||||||
|
|
||||||
|
self.scripts = None
|
||||||
|
self.script_args = None
|
||||||
|
self.all_prompts = None
|
||||||
|
self.all_negative_prompts = None
|
||||||
|
self.all_seeds = None
|
||||||
|
self.all_subseeds = None
|
||||||
|
self.iteration = 0
|
||||||
|
|
||||||
|
def txt2img_image_conditioning(self, x, width=None, height=None):
|
||||||
|
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
|
||||||
|
|
||||||
|
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
|
||||||
|
|
||||||
|
def depth2img_image_conditioning(self, source_image):
|
||||||
|
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
|
||||||
|
transformer = AddMiDaS(model_type="dpt_hybrid")
|
||||||
|
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
|
||||||
|
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
||||||
|
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
||||||
|
|
||||||
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
||||||
|
conditioning = torch.nn.functional.interpolate(
|
||||||
|
self.sd_model.depth_model(midas_in),
|
||||||
|
size=conditioning_image.shape[2:],
|
||||||
|
mode="bicubic",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
(depth_min, depth_max) = torch.aminmax(conditioning)
|
||||||
|
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
|
||||||
|
return conditioning
|
||||||
|
|
||||||
|
def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
|
||||||
|
self.is_using_inpainting_conditioning = True
|
||||||
|
|
||||||
|
# Handle the different mask inputs
|
||||||
|
if image_mask is not None:
|
||||||
|
if torch.is_tensor(image_mask):
|
||||||
|
conditioning_mask = image_mask
|
||||||
|
else:
|
||||||
|
conditioning_mask = np.array(image_mask.convert("L"))
|
||||||
|
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
|
||||||
|
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
|
||||||
|
|
||||||
|
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
|
||||||
|
conditioning_mask = torch.round(conditioning_mask)
|
||||||
|
else:
|
||||||
|
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
|
||||||
|
|
||||||
|
# Create another latent image, this time with a masked version of the original input.
|
||||||
|
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
||||||
|
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
|
||||||
|
conditioning_image = torch.lerp(
|
||||||
|
source_image,
|
||||||
|
source_image * (1.0 - conditioning_mask),
|
||||||
|
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Encode the new masked image using first stage of network.
|
||||||
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
||||||
|
|
||||||
|
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
||||||
|
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
||||||
|
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
|
||||||
|
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
|
||||||
|
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
|
||||||
|
|
||||||
|
return image_conditioning
|
||||||
|
|
||||||
|
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
|
||||||
|
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
||||||
|
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
||||||
|
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
||||||
|
return self.depth2img_image_conditioning(source_image)
|
||||||
|
|
||||||
|
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
||||||
|
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
||||||
|
|
||||||
|
# Dummy zero conditioning if we're not using inpainting or depth model.
|
||||||
|
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.sd_model = None
|
||||||
|
self.sampler = None
|
||||||
|
|
||||||
|
|
||||||
class Processed:
|
class Processed:
|
||||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
|
||||||
self.images = images_list
|
self.images = images_list
|
||||||
self.prompt = p.prompt
|
self.prompt = p.prompt
|
||||||
self.negative_prompt = p.negative_prompt
|
self.negative_prompt = p.negative_prompt
|
||||||
@ -108,10 +249,10 @@ class Processed:
|
|||||||
self.subseed = subseed
|
self.subseed = subseed
|
||||||
self.subseed_strength = p.subseed_strength
|
self.subseed_strength = p.subseed_strength
|
||||||
self.info = info
|
self.info = info
|
||||||
|
self.comments = comments
|
||||||
self.width = p.width
|
self.width = p.width
|
||||||
self.height = p.height
|
self.height = p.height
|
||||||
self.sampler_index = p.sampler_index
|
self.sampler_name = p.sampler_name
|
||||||
self.sampler = samplers[p.sampler_index].name
|
|
||||||
self.cfg_scale = p.cfg_scale
|
self.cfg_scale = p.cfg_scale
|
||||||
self.steps = p.steps
|
self.steps = p.steps
|
||||||
self.batch_size = p.batch_size
|
self.batch_size = p.batch_size
|
||||||
@ -123,6 +264,9 @@ class Processed:
|
|||||||
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
self.denoising_strength = getattr(p, 'denoising_strength', None)
|
||||||
self.extra_generation_params = p.extra_generation_params
|
self.extra_generation_params = p.extra_generation_params
|
||||||
self.index_of_first_image = index_of_first_image
|
self.index_of_first_image = index_of_first_image
|
||||||
|
self.styles = p.styles
|
||||||
|
self.job_timestamp = state.job_timestamp
|
||||||
|
self.clip_skip = opts.CLIP_stop_at_last_layers
|
||||||
|
|
||||||
self.eta = p.eta
|
self.eta = p.eta
|
||||||
self.ddim_discretize = p.ddim_discretize
|
self.ddim_discretize = p.ddim_discretize
|
||||||
@ -133,19 +277,22 @@ class Processed:
|
|||||||
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
|
||||||
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
|
||||||
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
||||||
self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
|
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
||||||
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
||||||
|
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
||||||
|
|
||||||
self.all_prompts = all_prompts or [self.prompt]
|
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
||||||
self.all_seeds = all_seeds or [self.seed]
|
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
||||||
self.all_subseeds = all_subseeds or [self.subseed]
|
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
||||||
|
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
||||||
self.infotexts = infotexts or [info]
|
self.infotexts = infotexts or [info]
|
||||||
|
|
||||||
def js(self):
|
def js(self):
|
||||||
obj = {
|
obj = {
|
||||||
"prompt": self.prompt,
|
"prompt": self.all_prompts[0],
|
||||||
"all_prompts": self.all_prompts,
|
"all_prompts": self.all_prompts,
|
||||||
"negative_prompt": self.negative_prompt,
|
"negative_prompt": self.all_negative_prompts[0],
|
||||||
|
"all_negative_prompts": self.all_negative_prompts,
|
||||||
"seed": self.seed,
|
"seed": self.seed,
|
||||||
"all_seeds": self.all_seeds,
|
"all_seeds": self.all_seeds,
|
||||||
"subseed": self.subseed,
|
"subseed": self.subseed,
|
||||||
@ -153,8 +300,7 @@ class Processed:
|
|||||||
"subseed_strength": self.subseed_strength,
|
"subseed_strength": self.subseed_strength,
|
||||||
"width": self.width,
|
"width": self.width,
|
||||||
"height": self.height,
|
"height": self.height,
|
||||||
"sampler_index": self.sampler_index,
|
"sampler_name": self.sampler_name,
|
||||||
"sampler": self.sampler,
|
|
||||||
"cfg_scale": self.cfg_scale,
|
"cfg_scale": self.cfg_scale,
|
||||||
"steps": self.steps,
|
"steps": self.steps,
|
||||||
"batch_size": self.batch_size,
|
"batch_size": self.batch_size,
|
||||||
@ -167,11 +313,15 @@ class Processed:
|
|||||||
"extra_generation_params": self.extra_generation_params,
|
"extra_generation_params": self.extra_generation_params,
|
||||||
"index_of_first_image": self.index_of_first_image,
|
"index_of_first_image": self.index_of_first_image,
|
||||||
"infotexts": self.infotexts,
|
"infotexts": self.infotexts,
|
||||||
|
"styles": self.styles,
|
||||||
|
"job_timestamp": self.job_timestamp,
|
||||||
|
"clip_skip": self.clip_skip,
|
||||||
|
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
|
||||||
}
|
}
|
||||||
|
|
||||||
return json.dumps(obj)
|
return json.dumps(obj)
|
||||||
|
|
||||||
def infotext(self, p: StableDiffusionProcessing, index):
|
def infotext(self, p: StableDiffusionProcessing, index):
|
||||||
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
||||||
|
|
||||||
|
|
||||||
@ -191,13 +341,14 @@ def slerp(val, low, high):
|
|||||||
|
|
||||||
|
|
||||||
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
|
||||||
|
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
|
||||||
xs = []
|
xs = []
|
||||||
|
|
||||||
# if we have multiple seeds, this means we are working with batch size>1; this then
|
# if we have multiple seeds, this means we are working with batch size>1; this then
|
||||||
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
# enables the generation of additional tensors with noise that the sampler will use during its processing.
|
||||||
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
|
||||||
# produce the same images as with two batches [100], [101].
|
# produce the same images as with two batches [100], [101].
|
||||||
if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds:
|
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
|
||||||
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
|
||||||
else:
|
else:
|
||||||
sampler_noises = None
|
sampler_noises = None
|
||||||
@ -237,6 +388,9 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||||||
if sampler_noises is not None:
|
if sampler_noises is not None:
|
||||||
cnt = p.sampler.number_of_needed_noises(p)
|
cnt = p.sampler.number_of_needed_noises(p)
|
||||||
|
|
||||||
|
if eta_noise_seed_delta > 0:
|
||||||
|
torch.manual_seed(seed + eta_noise_seed_delta)
|
||||||
|
|
||||||
for j in range(cnt):
|
for j in range(cnt):
|
||||||
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
||||||
|
|
||||||
@ -249,107 +403,171 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def decode_first_stage(model, x):
|
||||||
|
with devices.autocast(disable=x.dtype == devices.dtype_vae):
|
||||||
|
x = model.decode_first_stage(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_fixed_seed(seed):
|
||||||
|
if seed is None or seed == '' or seed == -1:
|
||||||
|
return int(random.randrange(4294967294))
|
||||||
|
|
||||||
|
return seed
|
||||||
|
|
||||||
|
|
||||||
def fix_seed(p):
|
def fix_seed(p):
|
||||||
p.seed = int(random.randrange(4294967294)) if p.seed is None or p.seed == '' or p.seed == -1 else p.seed
|
p.seed = get_fixed_seed(p.seed)
|
||||||
p.subseed = int(random.randrange(4294967294)) if p.subseed is None or p.subseed == '' or p.subseed == -1 else p.subseed
|
p.subseed = get_fixed_seed(p.subseed)
|
||||||
|
|
||||||
|
|
||||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
||||||
index = position_in_batch + iteration * p.batch_size
|
index = position_in_batch + iteration * p.batch_size
|
||||||
|
|
||||||
|
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||||
|
|
||||||
generation_params = {
|
generation_params = {
|
||||||
"Steps": p.steps,
|
"Steps": p.steps,
|
||||||
"Sampler": samplers[p.sampler_index].name,
|
"Sampler": p.sampler_name,
|
||||||
"CFG scale": p.cfg_scale,
|
"CFG scale": p.cfg_scale,
|
||||||
"Seed": all_seeds[index],
|
"Seed": all_seeds[index],
|
||||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||||
"Size": f"{p.width}x{p.height}",
|
"Size": f"{p.width}x{p.height}",
|
||||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||||
|
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||||
|
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
|
||||||
|
"Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)),
|
||||||
|
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
|
||||||
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
||||||
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
||||||
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
||||||
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
||||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||||
"Eta": (None if p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
||||||
|
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||||
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
|
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||||
}
|
}
|
||||||
|
|
||||||
generation_params.update(p.extra_generation_params)
|
generation_params.update(p.extra_generation_params)
|
||||||
|
|
||||||
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
|
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||||
|
|
||||||
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
|
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
|
||||||
|
|
||||||
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||||
|
|
||||||
|
|
||||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
|
||||||
|
|
||||||
|
try:
|
||||||
|
for k, v in p.override_settings.items():
|
||||||
|
setattr(opts, k, v)
|
||||||
|
if k == 'sd_hypernetwork': shared.reload_hypernetworks() # make onchange call for changing hypernet
|
||||||
|
if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model
|
||||||
|
if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE
|
||||||
|
|
||||||
|
res = process_images_inner(p)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
# restore opts to original state
|
||||||
|
if p.override_settings_restore_afterwards:
|
||||||
|
for k, v in stored_opts.items():
|
||||||
|
setattr(opts, k, v)
|
||||||
|
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
|
||||||
|
if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
|
||||||
|
if k == 'sd_vae': sd_vae.reload_vae_weights()
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||||
|
|
||||||
if type(p.prompt) == list:
|
if type(p.prompt) == list:
|
||||||
assert(len(p.prompt) > 0)
|
assert(len(p.prompt) > 0)
|
||||||
else:
|
else:
|
||||||
assert p.prompt is not None
|
assert p.prompt is not None
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
fix_seed(p)
|
seed = get_fixed_seed(p.seed)
|
||||||
|
subseed = get_fixed_seed(p.subseed)
|
||||||
os.makedirs(p.outpath_samples, exist_ok=True)
|
|
||||||
os.makedirs(p.outpath_grids, exist_ok=True)
|
|
||||||
|
|
||||||
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
|
||||||
|
modules.sd_hijack.model_hijack.clear_comments()
|
||||||
|
|
||||||
comments = {}
|
comments = {}
|
||||||
|
|
||||||
shared.prompt_styles.apply_styles(p)
|
|
||||||
|
|
||||||
if type(p.prompt) == list:
|
if type(p.prompt) == list:
|
||||||
all_prompts = p.prompt
|
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
|
||||||
else:
|
else:
|
||||||
all_prompts = p.batch_size * p.n_iter * [p.prompt]
|
p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
|
||||||
|
|
||||||
if type(p.seed) == list:
|
if type(p.negative_prompt) == list:
|
||||||
all_seeds = p.seed
|
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
|
||||||
else:
|
else:
|
||||||
all_seeds = [int(p.seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
|
p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
|
||||||
|
|
||||||
if type(p.subseed) == list:
|
if type(seed) == list:
|
||||||
all_subseeds = p.subseed
|
p.all_seeds = seed
|
||||||
else:
|
else:
|
||||||
all_subseeds = [int(p.subseed) + x for x in range(len(all_prompts))]
|
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
|
||||||
|
|
||||||
|
if type(subseed) == list:
|
||||||
|
p.all_subseeds = subseed
|
||||||
|
else:
|
||||||
|
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
||||||
|
|
||||||
def infotext(iteration=0, position_in_batch=0):
|
def infotext(iteration=0, position_in_batch=0):
|
||||||
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
|
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
||||||
|
|
||||||
if os.path.exists(cmd_opts.embeddings_dir):
|
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
||||||
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model)
|
processed = Processed(p, [], p.seed, "")
|
||||||
|
file.write(processed.infotext(p, 0))
|
||||||
|
|
||||||
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||||
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.process(p)
|
||||||
|
|
||||||
infotexts = []
|
infotexts = []
|
||||||
output_images = []
|
output_images = []
|
||||||
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
||||||
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
|
with torch.no_grad(), p.sd_model.ema_scope():
|
||||||
with torch.no_grad(), precision_scope("cuda"), ema_scope():
|
with devices.autocast():
|
||||||
p.init(all_prompts, all_seeds, all_subseeds)
|
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
|
||||||
|
|
||||||
if state.job_count == -1:
|
if state.job_count == -1:
|
||||||
state.job_count = p.n_iter
|
state.job_count = p.n_iter
|
||||||
|
|
||||||
for n in range(p.n_iter):
|
for n in range(p.n_iter):
|
||||||
|
p.iteration = n
|
||||||
|
|
||||||
|
if state.skipped:
|
||||||
|
state.skipped = False
|
||||||
|
|
||||||
if state.interrupted:
|
if state.interrupted:
|
||||||
break
|
break
|
||||||
|
|
||||||
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
|
||||||
if (len(prompts) == 0):
|
if len(prompts) == 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
if p.scripts is not None:
|
||||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
||||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
|
||||||
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
with devices.autocast():
|
||||||
|
uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
|
||||||
|
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
||||||
|
|
||||||
if len(model_hijack.comments) > 0:
|
if len(model_hijack.comments) > 0:
|
||||||
for comment in model_hijack.comments:
|
for comment in model_hijack.comments:
|
||||||
@ -358,19 +576,22 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if p.n_iter > 1:
|
if p.n_iter > 1:
|
||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
|
||||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
|
with devices.autocast():
|
||||||
if state.interrupted:
|
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
||||||
|
|
||||||
# if we are interruped, sample returns just noise
|
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
||||||
# use the image collected previously in sampler loop
|
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||||
samples_ddim = shared.state.current_latent
|
|
||||||
|
|
||||||
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
|
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
if opts.filter_nsfw:
|
del samples_ddim
|
||||||
import modules.safety as safety
|
|
||||||
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
|
lowvram.send_everything_to_cpu()
|
||||||
|
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
||||||
|
|
||||||
for i, x_sample in enumerate(x_samples_ddim):
|
for i, x_sample in enumerate(x_samples_ddim):
|
||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
@ -383,34 +604,31 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
x_sample = modules.face_restoration.restore_faces(x_sample)
|
x_sample = modules.face_restoration.restore_faces(x_sample)
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
image = Image.fromarray(x_sample)
|
image = Image.fromarray(x_sample)
|
||||||
|
|
||||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
||||||
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
|
images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
||||||
image = apply_color_correction(p.color_corrections[i], image)
|
image = apply_color_correction(p.color_corrections[i], image)
|
||||||
|
|
||||||
if p.overlay_images is not None and i < len(p.overlay_images):
|
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||||
overlay = p.overlay_images[i]
|
|
||||||
|
|
||||||
if p.paste_to is not None:
|
|
||||||
x, y, w, h = p.paste_to
|
|
||||||
base_image = Image.new('RGBA', (overlay.width, overlay.height))
|
|
||||||
image = images.resize_image(1, image, w, h)
|
|
||||||
base_image.paste(image, (x, y))
|
|
||||||
image = base_image
|
|
||||||
|
|
||||||
image = image.convert('RGBA')
|
|
||||||
image.alpha_composite(overlay)
|
|
||||||
image = image.convert('RGB')
|
|
||||||
|
|
||||||
if opts.samples_save and not p.do_not_save_samples:
|
if opts.samples_save and not p.do_not_save_samples:
|
||||||
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
||||||
|
|
||||||
infotexts.append(infotext(n, i))
|
text = infotext(n, i)
|
||||||
|
infotexts.append(text)
|
||||||
|
if opts.enable_pnginfo:
|
||||||
|
image.info["parameters"] = text
|
||||||
output_images.append(image)
|
output_images.append(image)
|
||||||
|
|
||||||
|
del x_samples_ddim
|
||||||
|
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
state.nextjob()
|
state.nextjob()
|
||||||
|
|
||||||
p.color_corrections = None
|
p.color_corrections = None
|
||||||
@ -421,29 +639,41 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
grid = images.image_grid(output_images, p.batch_size)
|
grid = images.image_grid(output_images, p.batch_size)
|
||||||
|
|
||||||
if opts.return_grid:
|
if opts.return_grid:
|
||||||
infotexts.insert(0, infotext())
|
text = infotext()
|
||||||
|
infotexts.insert(0, text)
|
||||||
|
if opts.enable_pnginfo:
|
||||||
|
grid.info["parameters"] = text
|
||||||
output_images.insert(0, grid)
|
output_images.insert(0, grid)
|
||||||
index_of_first_image = 1
|
index_of_first_image = 1
|
||||||
|
|
||||||
if opts.grid_save:
|
if opts.grid_save:
|
||||||
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
|
|
||||||
|
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
|
||||||
|
|
||||||
|
if p.scripts is not None:
|
||||||
|
p.scripts.postprocess(p, res)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
firstphase_width = 0
|
|
||||||
firstphase_height = 0
|
|
||||||
firstphase_width_truncated = 0
|
|
||||||
firstphase_height_truncated = 0
|
|
||||||
|
|
||||||
def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs):
|
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.enable_hr = enable_hr
|
self.enable_hr = enable_hr
|
||||||
self.scale_latent = scale_latent
|
|
||||||
self.denoising_strength = denoising_strength
|
self.denoising_strength = denoising_strength
|
||||||
|
self.hr_scale = hr_scale
|
||||||
|
self.hr_upscaler = hr_upscaler
|
||||||
|
|
||||||
|
if firstphase_width != 0 or firstphase_height != 0:
|
||||||
|
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
|
||||||
|
self.hr_scale = self.width / firstphase_width
|
||||||
|
self.width = firstphase_width
|
||||||
|
self.height = firstphase_height
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
if self.enable_hr:
|
if self.enable_hr:
|
||||||
@ -452,67 +682,86 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
else:
|
else:
|
||||||
state.job_count = state.job_count * 2
|
state.job_count = state.job_count * 2
|
||||||
|
|
||||||
desired_pixel_count = 512 * 512
|
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
||||||
actual_pixel_count = self.width * self.height
|
if self.hr_upscaler is not None:
|
||||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
|
||||||
|
|
||||||
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
self.firstphase_width_truncated = int(scale * self.width)
|
|
||||||
self.firstphase_height_truncated = int(scale * self.height)
|
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||||
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
if self.enable_hr and latent_scale_mode is None:
|
||||||
|
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
|
||||||
|
|
||||||
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
|
||||||
|
|
||||||
if not self.enable_hr:
|
if not self.enable_hr:
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
||||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
target_width = int(self.width * self.hr_scale)
|
||||||
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
|
target_height = int(self.height * self.hr_scale)
|
||||||
|
|
||||||
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
|
def save_intermediate(image, index):
|
||||||
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
|
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
||||||
|
|
||||||
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
|
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
||||||
|
return
|
||||||
|
|
||||||
if self.scale_latent:
|
if not isinstance(image, Image.Image):
|
||||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
image = sd_samplers.sample_to_image(image, index, approximation=0)
|
||||||
else:
|
|
||||||
decoded_samples = self.sd_model.decode_first_stage(samples)
|
|
||||||
|
|
||||||
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
|
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
|
||||||
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
|
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
|
||||||
|
|
||||||
|
if latent_scale_mode is not None:
|
||||||
|
for i in range(samples.shape[0]):
|
||||||
|
save_intermediate(samples, i)
|
||||||
|
|
||||||
|
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
|
||||||
|
|
||||||
|
# Avoid making the inpainting conditioning unless necessary as
|
||||||
|
# this does need some extra compute to decode / encode the image again.
|
||||||
|
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
||||||
|
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
||||||
else:
|
else:
|
||||||
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
image_conditioning = self.txt2img_image_conditioning(samples)
|
||||||
|
else:
|
||||||
|
decoded_samples = decode_first_stage(self.sd_model, samples)
|
||||||
|
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
batch_images = []
|
batch_images = []
|
||||||
for i, x_sample in enumerate(lowres_samples):
|
for i, x_sample in enumerate(lowres_samples):
|
||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
x_sample = x_sample.astype(np.uint8)
|
x_sample = x_sample.astype(np.uint8)
|
||||||
image = Image.fromarray(x_sample)
|
image = Image.fromarray(x_sample)
|
||||||
image = images.resize_image(0, image, self.width, self.height)
|
|
||||||
image = np.array(image).astype(np.float32) / 255.0
|
|
||||||
image = np.moveaxis(image, 2, 0)
|
|
||||||
batch_images.append(image)
|
|
||||||
|
|
||||||
decoded_samples = torch.from_numpy(np.array(batch_images))
|
save_intermediate(image, i)
|
||||||
decoded_samples = decoded_samples.to(shared.device)
|
|
||||||
decoded_samples = 2. * decoded_samples - 1.
|
image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
|
||||||
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
|
image = np.moveaxis(image, 2, 0)
|
||||||
|
batch_images.append(image)
|
||||||
|
|
||||||
|
decoded_samples = torch.from_numpy(np.array(batch_images))
|
||||||
|
decoded_samples = decoded_samples.to(shared.device)
|
||||||
|
decoded_samples = 2. * decoded_samples - 1.
|
||||||
|
|
||||||
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
|
||||||
|
|
||||||
|
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
|
||||||
|
|
||||||
shared.state.nextjob()
|
shared.state.nextjob()
|
||||||
|
|
||||||
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
|
||||||
|
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
|
||||||
|
|
||||||
# GC now before running the next img2img to prevent running out of memory
|
# GC now before running the next img2img to prevent running out of memory
|
||||||
x = None
|
x = None
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
|
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
@ -520,7 +769,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
|
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
self.init_images = init_images
|
self.init_images = init_images
|
||||||
@ -528,7 +777,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
self.denoising_strength: float = denoising_strength
|
self.denoising_strength: float = denoising_strength
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
self.image_mask = mask
|
self.image_mask = mask
|
||||||
#self.image_unblurred_mask = None
|
|
||||||
self.latent_mask = None
|
self.latent_mask = None
|
||||||
self.mask_for_overlay = None
|
self.mask_for_overlay = None
|
||||||
self.mask_blur = mask_blur
|
self.mask_blur = mask_blur
|
||||||
@ -536,65 +784,68 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
self.inpaint_full_res = inpaint_full_res
|
self.inpaint_full_res = inpaint_full_res
|
||||||
self.inpaint_full_res_padding = inpaint_full_res_padding
|
self.inpaint_full_res_padding = inpaint_full_res_padding
|
||||||
self.inpainting_mask_invert = inpainting_mask_invert
|
self.inpainting_mask_invert = inpainting_mask_invert
|
||||||
|
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
|
||||||
self.mask = None
|
self.mask = None
|
||||||
self.nmask = None
|
self.nmask = None
|
||||||
|
self.image_conditioning = None
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
crop_region = None
|
crop_region = None
|
||||||
|
|
||||||
if self.image_mask is not None:
|
image_mask = self.image_mask
|
||||||
self.image_mask = self.image_mask.convert('L')
|
|
||||||
|
if image_mask is not None:
|
||||||
|
image_mask = image_mask.convert('L')
|
||||||
|
|
||||||
if self.inpainting_mask_invert:
|
if self.inpainting_mask_invert:
|
||||||
self.image_mask = ImageOps.invert(self.image_mask)
|
image_mask = ImageOps.invert(image_mask)
|
||||||
|
|
||||||
#self.image_unblurred_mask = self.image_mask
|
|
||||||
|
|
||||||
if self.mask_blur > 0:
|
if self.mask_blur > 0:
|
||||||
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||||
|
|
||||||
if self.inpaint_full_res:
|
if self.inpaint_full_res:
|
||||||
self.mask_for_overlay = self.image_mask
|
self.mask_for_overlay = image_mask
|
||||||
mask = self.image_mask.convert('L')
|
mask = image_mask.convert('L')
|
||||||
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
||||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||||
x1, y1, x2, y2 = crop_region
|
x1, y1, x2, y2 = crop_region
|
||||||
|
|
||||||
mask = mask.crop(crop_region)
|
mask = mask.crop(crop_region)
|
||||||
self.image_mask = images.resize_image(2, mask, self.width, self.height)
|
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||||
else:
|
else:
|
||||||
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
|
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
||||||
np_mask = np.array(self.image_mask)
|
np_mask = np.array(image_mask)
|
||||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||||
|
|
||||||
self.overlay_images = []
|
self.overlay_images = []
|
||||||
|
|
||||||
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
|
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
||||||
|
|
||||||
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
||||||
if add_color_corrections:
|
if add_color_corrections:
|
||||||
self.color_corrections = []
|
self.color_corrections = []
|
||||||
imgs = []
|
imgs = []
|
||||||
for img in self.init_images:
|
for img in self.init_images:
|
||||||
image = img.convert("RGB")
|
image = images.flatten(img, opts.img2img_background_color)
|
||||||
|
|
||||||
if crop_region is None:
|
if crop_region is None and self.resize_mode != 3:
|
||||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||||
|
|
||||||
self.overlay_images.append(image_masked.convert('RGBA'))
|
self.overlay_images.append(image_masked.convert('RGBA'))
|
||||||
|
|
||||||
|
# crop_region is not None if we are doing inpaint full res
|
||||||
if crop_region is not None:
|
if crop_region is not None:
|
||||||
image = image.crop(crop_region)
|
image = image.crop(crop_region)
|
||||||
image = images.resize_image(2, image, self.width, self.height)
|
image = images.resize_image(2, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
if self.inpainting_fill != 1:
|
if self.inpainting_fill != 1:
|
||||||
image = masking.fill(image, latent_mask)
|
image = masking.fill(image, latent_mask)
|
||||||
|
|
||||||
@ -610,6 +861,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
|
||||||
if self.overlay_images is not None:
|
if self.overlay_images is not None:
|
||||||
self.overlay_images = self.overlay_images * self.batch_size
|
self.overlay_images = self.overlay_images * self.batch_size
|
||||||
|
|
||||||
|
if self.color_corrections is not None and len(self.color_corrections) == 1:
|
||||||
|
self.color_corrections = self.color_corrections * self.batch_size
|
||||||
|
|
||||||
elif len(imgs) <= self.batch_size:
|
elif len(imgs) <= self.batch_size:
|
||||||
self.batch_size = len(imgs)
|
self.batch_size = len(imgs)
|
||||||
batch_images = np.array(imgs)
|
batch_images = np.array(imgs)
|
||||||
@ -622,7 +877,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
|
|
||||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if self.resize_mode == 3:
|
||||||
|
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||||
|
|
||||||
|
if image_mask is not None:
|
||||||
init_mask = latent_mask
|
init_mask = latent_mask
|
||||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||||
@ -639,12 +897,21 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
elif self.inpainting_fill == 3:
|
elif self.inpainting_fill == 3:
|
||||||
self.init_latent = self.init_latent * self.mask
|
self.init_latent = self.init_latent * self.mask
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
|
||||||
|
|
||||||
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
|
||||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
if self.initial_noise_multiplier != 1.0:
|
||||||
|
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
|
||||||
|
x *= self.initial_noise_multiplier
|
||||||
|
|
||||||
|
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
samples = samples * self.nmask + self.init_latent * self.mask
|
samples = samples * self.nmask + self.init_latent * self.mask
|
||||||
|
|
||||||
|
del x
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
return samples
|
return samples
|
||||||
|
@ -1,19 +1,7 @@
|
|||||||
import re
|
import re
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
from typing import List
|
||||||
|
import lark
|
||||||
import modules.shared as shared
|
|
||||||
|
|
||||||
re_prompt = re.compile(r'''
|
|
||||||
(.*?)
|
|
||||||
\[
|
|
||||||
([^]:]+):
|
|
||||||
(?:([^]:]*):)?
|
|
||||||
([0-9]*\.?[0-9]+)
|
|
||||||
]
|
|
||||||
|
|
|
||||||
(.+)
|
|
||||||
''', re.X)
|
|
||||||
|
|
||||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||||
# will be represented with prompt_schedule like this (assuming steps=100):
|
# will be represented with prompt_schedule like this (assuming steps=100):
|
||||||
@ -23,71 +11,117 @@ re_prompt = re.compile(r'''
|
|||||||
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
||||||
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
||||||
|
|
||||||
|
schedule_parser = lark.Lark(r"""
|
||||||
|
!start: (prompt | /[][():]/+)*
|
||||||
|
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
|
||||||
|
!emphasized: "(" prompt ")"
|
||||||
|
| "(" prompt ":" prompt ")"
|
||||||
|
| "[" prompt "]"
|
||||||
|
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
||||||
|
alternate: "[" prompt ("|" prompt)+ "]"
|
||||||
|
WHITESPACE: /\s+/
|
||||||
|
plain: /([^\\\[\]():|]|\\.)+/
|
||||||
|
%import common.SIGNED_NUMBER -> NUMBER
|
||||||
|
""")
|
||||||
|
|
||||||
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||||
res = []
|
"""
|
||||||
cache = {}
|
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
|
||||||
|
>>> g("test")
|
||||||
|
[[10, 'test']]
|
||||||
|
>>> g("a [b:3]")
|
||||||
|
[[3, 'a '], [10, 'a b']]
|
||||||
|
>>> g("a [b: 3]")
|
||||||
|
[[3, 'a '], [10, 'a b']]
|
||||||
|
>>> g("a [[[b]]:2]")
|
||||||
|
[[2, 'a '], [10, 'a [[b]]']]
|
||||||
|
>>> g("[(a:2):3]")
|
||||||
|
[[3, ''], [10, '(a:2)']]
|
||||||
|
>>> g("a [b : c : 1] d")
|
||||||
|
[[1, 'a b d'], [10, 'a c d']]
|
||||||
|
>>> g("a[b:[c:d:2]:1]e")
|
||||||
|
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
|
||||||
|
>>> g("a [unbalanced")
|
||||||
|
[[10, 'a [unbalanced']]
|
||||||
|
>>> g("a [b:.5] c")
|
||||||
|
[[5, 'a c'], [10, 'a b c']]
|
||||||
|
>>> g("a [{b|d{:.5] c") # not handling this right now
|
||||||
|
[[5, 'a c'], [10, 'a {b|d{ c']]
|
||||||
|
>>> g("((a][:b:c [d:3]")
|
||||||
|
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
|
||||||
|
"""
|
||||||
|
|
||||||
for prompt in prompts:
|
def collect_steps(steps, tree):
|
||||||
prompt_schedule: list[list[str | int]] = [[steps, ""]]
|
l = [steps]
|
||||||
|
class CollectSteps(lark.Visitor):
|
||||||
|
def scheduled(self, tree):
|
||||||
|
tree.children[-1] = float(tree.children[-1])
|
||||||
|
if tree.children[-1] < 1:
|
||||||
|
tree.children[-1] *= steps
|
||||||
|
tree.children[-1] = min(steps, int(tree.children[-1]))
|
||||||
|
l.append(tree.children[-1])
|
||||||
|
def alternate(self, tree):
|
||||||
|
l.extend(range(1, steps+1))
|
||||||
|
CollectSteps().visit(tree)
|
||||||
|
return sorted(set(l))
|
||||||
|
|
||||||
cached = cache.get(prompt, None)
|
def at_step(step, tree):
|
||||||
if cached is not None:
|
class AtStep(lark.Transformer):
|
||||||
res.append(cached)
|
def scheduled(self, args):
|
||||||
continue
|
before, after, _, when = args
|
||||||
|
yield before or () if step <= when else after
|
||||||
|
def alternate(self, args):
|
||||||
|
yield next(args[(step - 1)%len(args)])
|
||||||
|
def start(self, args):
|
||||||
|
def flatten(x):
|
||||||
|
if type(x) == str:
|
||||||
|
yield x
|
||||||
|
else:
|
||||||
|
for gen in x:
|
||||||
|
yield from flatten(gen)
|
||||||
|
return ''.join(flatten(args))
|
||||||
|
def plain(self, args):
|
||||||
|
yield args[0].value
|
||||||
|
def __default__(self, data, children, meta):
|
||||||
|
for child in children:
|
||||||
|
yield from child
|
||||||
|
return AtStep().transform(tree)
|
||||||
|
|
||||||
for m in re_prompt.finditer(prompt):
|
def get_schedule(prompt):
|
||||||
plaintext = m.group(1) if m.group(5) is None else m.group(5)
|
try:
|
||||||
concept_from = m.group(2)
|
tree = schedule_parser.parse(prompt)
|
||||||
concept_to = m.group(3)
|
except lark.exceptions.LarkError as e:
|
||||||
if concept_to is None:
|
if 0:
|
||||||
concept_to = concept_from
|
import traceback
|
||||||
concept_from = ""
|
traceback.print_exc()
|
||||||
swap_position = float(m.group(4)) if m.group(4) is not None else None
|
return [[steps, prompt]]
|
||||||
|
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
|
||||||
|
|
||||||
if swap_position is not None:
|
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
|
||||||
if swap_position < 1:
|
return [promptdict[prompt] for prompt in prompts]
|
||||||
swap_position = swap_position * steps
|
|
||||||
swap_position = int(min(swap_position, steps))
|
|
||||||
|
|
||||||
swap_index = None
|
|
||||||
found_exact_index = False
|
|
||||||
for i in range(len(prompt_schedule)):
|
|
||||||
end_step = prompt_schedule[i][0]
|
|
||||||
prompt_schedule[i][1] += plaintext
|
|
||||||
|
|
||||||
if swap_position is not None and swap_index is None:
|
|
||||||
if swap_position == end_step:
|
|
||||||
swap_index = i
|
|
||||||
found_exact_index = True
|
|
||||||
|
|
||||||
if swap_position < end_step:
|
|
||||||
swap_index = i
|
|
||||||
|
|
||||||
if swap_index is not None:
|
|
||||||
if not found_exact_index:
|
|
||||||
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
|
|
||||||
|
|
||||||
for i in range(len(prompt_schedule)):
|
|
||||||
end_step = prompt_schedule[i][0]
|
|
||||||
must_replace = swap_position < end_step
|
|
||||||
|
|
||||||
prompt_schedule[i][1] += concept_to if must_replace else concept_from
|
|
||||||
|
|
||||||
res.append(prompt_schedule)
|
|
||||||
cache[prompt] = prompt_schedule
|
|
||||||
#for t in prompt_schedule:
|
|
||||||
# print(t)
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
||||||
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
|
||||||
|
|
||||||
|
|
||||||
def get_learned_conditioning(prompts, steps):
|
def get_learned_conditioning(model, prompts, steps):
|
||||||
|
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
|
||||||
|
and the sampling step at which this condition is to be replaced by the next one.
|
||||||
|
|
||||||
|
Input:
|
||||||
|
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
|
||||||
|
|
||||||
|
Output:
|
||||||
|
[
|
||||||
|
[
|
||||||
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
|
||||||
|
],
|
||||||
|
[
|
||||||
|
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
|
||||||
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
|
||||||
|
]
|
||||||
|
]
|
||||||
|
"""
|
||||||
res = []
|
res = []
|
||||||
|
|
||||||
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
||||||
@ -101,7 +135,7 @@ def get_learned_conditioning(prompts, steps):
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
texts = [x[1] for x in prompt_schedule]
|
texts = [x[1] for x in prompt_schedule]
|
||||||
conds = shared.sd_model.get_learned_conditioning(texts)
|
conds = model.get_learned_conditioning(texts)
|
||||||
|
|
||||||
cond_schedule = []
|
cond_schedule = []
|
||||||
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||||||
@ -110,22 +144,118 @@ def get_learned_conditioning(prompts, steps):
|
|||||||
cache[prompt] = cond_schedule
|
cache[prompt] = cond_schedule
|
||||||
res.append(cond_schedule)
|
res.append(cond_schedule)
|
||||||
|
|
||||||
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
|
return res
|
||||||
|
|
||||||
|
|
||||||
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
re_AND = re.compile(r"\bAND\b")
|
||||||
res = torch.zeros(c.shape, device=shared.device, dtype=next(shared.sd_model.parameters()).dtype)
|
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
||||||
for i, cond_schedule in enumerate(c.schedules):
|
|
||||||
|
def get_multicond_prompt_list(prompts):
|
||||||
|
res_indexes = []
|
||||||
|
|
||||||
|
prompt_flat_list = []
|
||||||
|
prompt_indexes = {}
|
||||||
|
|
||||||
|
for prompt in prompts:
|
||||||
|
subprompts = re_AND.split(prompt)
|
||||||
|
|
||||||
|
indexes = []
|
||||||
|
for subprompt in subprompts:
|
||||||
|
match = re_weight.search(subprompt)
|
||||||
|
|
||||||
|
text, weight = match.groups() if match is not None else (subprompt, 1.0)
|
||||||
|
|
||||||
|
weight = float(weight) if weight is not None else 1.0
|
||||||
|
|
||||||
|
index = prompt_indexes.get(text, None)
|
||||||
|
if index is None:
|
||||||
|
index = len(prompt_flat_list)
|
||||||
|
prompt_flat_list.append(text)
|
||||||
|
prompt_indexes[text] = index
|
||||||
|
|
||||||
|
indexes.append((index, weight))
|
||||||
|
|
||||||
|
res_indexes.append(indexes)
|
||||||
|
|
||||||
|
return res_indexes, prompt_flat_list, prompt_indexes
|
||||||
|
|
||||||
|
|
||||||
|
class ComposableScheduledPromptConditioning:
|
||||||
|
def __init__(self, schedules, weight=1.0):
|
||||||
|
self.schedules: List[ScheduledPromptConditioning] = schedules
|
||||||
|
self.weight: float = weight
|
||||||
|
|
||||||
|
|
||||||
|
class MulticondLearnedConditioning:
|
||||||
|
def __init__(self, shape, batch):
|
||||||
|
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
||||||
|
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
||||||
|
|
||||||
|
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
||||||
|
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
||||||
|
For each prompt, the list is obtained by splitting the prompt using the AND separator.
|
||||||
|
|
||||||
|
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
|
||||||
|
"""
|
||||||
|
|
||||||
|
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
|
||||||
|
|
||||||
|
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
|
||||||
|
|
||||||
|
res = []
|
||||||
|
for indexes in res_indexes:
|
||||||
|
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
|
||||||
|
|
||||||
|
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||||
|
|
||||||
|
|
||||||
|
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
||||||
|
param = c[0][0].cond
|
||||||
|
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||||
|
for i, cond_schedule in enumerate(c):
|
||||||
target_index = 0
|
target_index = 0
|
||||||
for curret_index, (end_at, cond) in enumerate(cond_schedule):
|
for current, (end_at, cond) in enumerate(cond_schedule):
|
||||||
if current_step <= end_at:
|
if current_step <= end_at:
|
||||||
target_index = curret_index
|
target_index = current
|
||||||
break
|
break
|
||||||
res[i] = cond_schedule[target_index].cond
|
res[i] = cond_schedule[target_index].cond
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
||||||
|
param = c.batch[0][0].schedules[0].cond
|
||||||
|
|
||||||
|
tensors = []
|
||||||
|
conds_list = []
|
||||||
|
|
||||||
|
for batch_no, composable_prompts in enumerate(c.batch):
|
||||||
|
conds_for_batch = []
|
||||||
|
|
||||||
|
for cond_index, composable_prompt in enumerate(composable_prompts):
|
||||||
|
target_index = 0
|
||||||
|
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
|
||||||
|
if current_step <= end_at:
|
||||||
|
target_index = current
|
||||||
|
break
|
||||||
|
|
||||||
|
conds_for_batch.append((len(tensors), composable_prompt.weight))
|
||||||
|
tensors.append(composable_prompt.schedules[target_index].cond)
|
||||||
|
|
||||||
|
conds_list.append(conds_for_batch)
|
||||||
|
|
||||||
|
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
|
||||||
|
# and won't be able to torch.stack them. So this fixes that.
|
||||||
|
token_count = max([x.shape[0] for x in tensors])
|
||||||
|
for i in range(len(tensors)):
|
||||||
|
if tensors[i].shape[0] != token_count:
|
||||||
|
last_vector = tensors[i][-1:]
|
||||||
|
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
|
||||||
|
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
|
||||||
|
|
||||||
|
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
|
||||||
|
|
||||||
|
|
||||||
re_attention = re.compile(r"""
|
re_attention = re.compile(r"""
|
||||||
\\\(|
|
\\\(|
|
||||||
\\\)|
|
\\\)|
|
||||||
@ -145,7 +275,7 @@ re_attention = re.compile(r"""
|
|||||||
|
|
||||||
def parse_prompt_attention(text):
|
def parse_prompt_attention(text):
|
||||||
"""
|
"""
|
||||||
Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight.
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
||||||
Accepted tokens are:
|
Accepted tokens are:
|
||||||
(abc) - increases attention to abc by a multiplier of 1.1
|
(abc) - increases attention to abc by a multiplier of 1.1
|
||||||
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
||||||
@ -157,23 +287,26 @@ def parse_prompt_attention(text):
|
|||||||
\\ - literal character '\'
|
\\ - literal character '\'
|
||||||
anything else - just text
|
anything else - just text
|
||||||
|
|
||||||
Example:
|
>>> parse_prompt_attention('normal text')
|
||||||
|
[['normal text', 1.0]]
|
||||||
'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).'
|
>>> parse_prompt_attention('an (important) word')
|
||||||
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
||||||
produces:
|
>>> parse_prompt_attention('(unbalanced')
|
||||||
|
[['unbalanced', 1.1]]
|
||||||
[
|
>>> parse_prompt_attention('\(literal\]')
|
||||||
['a ', 1.0],
|
[['(literal]', 1.0]]
|
||||||
['house', 1.5730000000000004],
|
>>> parse_prompt_attention('(unnecessary)(parens)')
|
||||||
[' ', 1.1],
|
[['unnecessaryparens', 1.1]]
|
||||||
['on', 1.0],
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
||||||
[' a ', 1.1],
|
[['a ', 1.0],
|
||||||
['hill', 0.55],
|
['house', 1.5730000000000004],
|
||||||
[', sun, ', 1.1],
|
[' ', 1.1],
|
||||||
['sky', 1.4641000000000006],
|
['on', 1.0],
|
||||||
['.', 1.1]
|
[' a ', 1.1],
|
||||||
]
|
['hill', 0.55],
|
||||||
|
[', sun, ', 1.1],
|
||||||
|
['sky', 1.4641000000000006],
|
||||||
|
['.', 1.1]]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
res = []
|
res = []
|
||||||
@ -215,4 +348,19 @@ def parse_prompt_attention(text):
|
|||||||
if len(res) == 0:
|
if len(res) == 0:
|
||||||
res = [["", 1.0]]
|
res = [["", 1.0]]
|
||||||
|
|
||||||
|
# merge runs of identical weights
|
||||||
|
i = 0
|
||||||
|
while i + 1 < len(res):
|
||||||
|
if res[i][1] == res[i + 1][1]:
|
||||||
|
res[i][0] += res[i + 1][0]
|
||||||
|
res.pop(i + 1)
|
||||||
|
else:
|
||||||
|
i += 1
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
||||||
|
else:
|
||||||
|
import torch # doctest faster
|
||||||
|
@ -8,14 +8,12 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
from realesrgan import RealESRGANer
|
from realesrgan import RealESRGANer
|
||||||
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.shared import cmd_opts, opts
|
from modules.shared import cmd_opts, opts
|
||||||
|
|
||||||
|
|
||||||
class UpscalerRealESRGAN(Upscaler):
|
class UpscalerRealESRGAN(Upscaler):
|
||||||
def __init__(self, path):
|
def __init__(self, path):
|
||||||
self.name = "RealESRGAN"
|
self.name = "RealESRGAN"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = path
|
self.user_path = path
|
||||||
super().__init__()
|
super().__init__()
|
||||||
try:
|
try:
|
||||||
|
192
modules/safe.py
Normal file
192
modules/safe.py
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
# this code is adapted from the script contributed by anon from /h/
|
||||||
|
|
||||||
|
import io
|
||||||
|
import pickle
|
||||||
|
import collections
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy
|
||||||
|
import _codecs
|
||||||
|
import zipfile
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
|
||||||
|
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
|
||||||
|
|
||||||
|
|
||||||
|
def encode(*args):
|
||||||
|
out = _codecs.encode(*args)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class RestrictedUnpickler(pickle.Unpickler):
|
||||||
|
extra_handler = None
|
||||||
|
|
||||||
|
def persistent_load(self, saved_id):
|
||||||
|
assert saved_id[0] == 'storage'
|
||||||
|
return TypedStorage()
|
||||||
|
|
||||||
|
def find_class(self, module, name):
|
||||||
|
if self.extra_handler is not None:
|
||||||
|
res = self.extra_handler(module, name)
|
||||||
|
if res is not None:
|
||||||
|
return res
|
||||||
|
|
||||||
|
if module == 'collections' and name == 'OrderedDict':
|
||||||
|
return getattr(collections, name)
|
||||||
|
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
|
||||||
|
return getattr(torch._utils, name)
|
||||||
|
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
|
||||||
|
return getattr(torch, name)
|
||||||
|
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
||||||
|
return getattr(torch.nn.modules.container, name)
|
||||||
|
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
|
||||||
|
return getattr(numpy.core.multiarray, name)
|
||||||
|
if module == 'numpy' and name in ['dtype', 'ndarray']:
|
||||||
|
return getattr(numpy, name)
|
||||||
|
if module == '_codecs' and name == 'encode':
|
||||||
|
return encode
|
||||||
|
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
||||||
|
import pytorch_lightning.callbacks
|
||||||
|
return pytorch_lightning.callbacks.model_checkpoint
|
||||||
|
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
|
||||||
|
import pytorch_lightning.callbacks.model_checkpoint
|
||||||
|
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
|
||||||
|
if module == "__builtin__" and name == 'set':
|
||||||
|
return set
|
||||||
|
|
||||||
|
# Forbid everything else.
|
||||||
|
raise Exception(f"global '{module}/{name}' is forbidden")
|
||||||
|
|
||||||
|
|
||||||
|
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
|
||||||
|
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
|
||||||
|
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
|
||||||
|
|
||||||
|
def check_zip_filenames(filename, names):
|
||||||
|
for name in names:
|
||||||
|
if allowed_zip_names_re.match(name):
|
||||||
|
continue
|
||||||
|
|
||||||
|
raise Exception(f"bad file inside {filename}: {name}")
|
||||||
|
|
||||||
|
|
||||||
|
def check_pt(filename, extra_handler):
|
||||||
|
try:
|
||||||
|
|
||||||
|
# new pytorch format is a zip file
|
||||||
|
with zipfile.ZipFile(filename) as z:
|
||||||
|
check_zip_filenames(filename, z.namelist())
|
||||||
|
|
||||||
|
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
|
||||||
|
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
|
||||||
|
if len(data_pkl_filenames) == 0:
|
||||||
|
raise Exception(f"data.pkl not found in {filename}")
|
||||||
|
if len(data_pkl_filenames) > 1:
|
||||||
|
raise Exception(f"Multiple data.pkl found in {filename}")
|
||||||
|
with z.open(data_pkl_filenames[0]) as file:
|
||||||
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
unpickler.extra_handler = extra_handler
|
||||||
|
unpickler.load()
|
||||||
|
|
||||||
|
except zipfile.BadZipfile:
|
||||||
|
|
||||||
|
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
||||||
|
with open(filename, "rb") as file:
|
||||||
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
unpickler.extra_handler = extra_handler
|
||||||
|
for i in range(5):
|
||||||
|
unpickler.load()
|
||||||
|
|
||||||
|
|
||||||
|
def load(filename, *args, **kwargs):
|
||||||
|
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
this function is intended to be used by extensions that want to load models with
|
||||||
|
some extra classes in them that the usual unpickler would find suspicious.
|
||||||
|
|
||||||
|
Use the extra_handler argument to specify a function that takes module and field name as text,
|
||||||
|
and returns that field's value:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def extra(module, name):
|
||||||
|
if module == 'collections' and name == 'OrderedDict':
|
||||||
|
return collections.OrderedDict
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
safe.load_with_extra('model.pt', extra_handler=extra)
|
||||||
|
```
|
||||||
|
|
||||||
|
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
|
||||||
|
definitely unsafe.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not shared.cmd_opts.disable_safe_unpickle:
|
||||||
|
check_pt(filename, extra_handler)
|
||||||
|
|
||||||
|
except pickle.UnpicklingError:
|
||||||
|
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
||||||
|
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
||||||
|
return None
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||||
|
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
||||||
|
return None
|
||||||
|
|
||||||
|
return unsafe_torch_load(filename, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class Extra:
|
||||||
|
"""
|
||||||
|
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
|
||||||
|
(because it's not your code making the torch.load call). The intended use is like this:
|
||||||
|
|
||||||
|
```
|
||||||
|
import torch
|
||||||
|
from modules import safe
|
||||||
|
|
||||||
|
def handler(module, name):
|
||||||
|
if module == 'torch' and name in ['float64', 'float16']:
|
||||||
|
return getattr(torch, name)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
with safe.Extra(handler):
|
||||||
|
x = torch.load('model.pt')
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, handler):
|
||||||
|
self.handler = handler
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
global global_extra_handler
|
||||||
|
|
||||||
|
assert global_extra_handler is None, 'already inside an Extra() block'
|
||||||
|
global_extra_handler = self.handler
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
global global_extra_handler
|
||||||
|
|
||||||
|
global_extra_handler = None
|
||||||
|
|
||||||
|
|
||||||
|
unsafe_torch_load = torch.load
|
||||||
|
torch.load = load
|
||||||
|
global_extra_handler = None
|
||||||
|
|
@ -1,42 +0,0 @@
|
|||||||
import torch
|
|
||||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
||||||
from transformers import AutoFeatureExtractor
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
import modules.shared as shared
|
|
||||||
|
|
||||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
||||||
safety_feature_extractor = None
|
|
||||||
safety_checker = None
|
|
||||||
|
|
||||||
def numpy_to_pil(images):
|
|
||||||
"""
|
|
||||||
Convert a numpy image or a batch of images to a PIL image.
|
|
||||||
"""
|
|
||||||
if images.ndim == 3:
|
|
||||||
images = images[None, ...]
|
|
||||||
images = (images * 255).round().astype("uint8")
|
|
||||||
pil_images = [Image.fromarray(image) for image in images]
|
|
||||||
|
|
||||||
return pil_images
|
|
||||||
|
|
||||||
# check and replace nsfw content
|
|
||||||
def check_safety(x_image):
|
|
||||||
global safety_feature_extractor, safety_checker
|
|
||||||
|
|
||||||
if safety_feature_extractor is None:
|
|
||||||
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
|
||||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
|
||||||
|
|
||||||
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
|
||||||
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
|
||||||
|
|
||||||
return x_checked_image, has_nsfw_concept
|
|
||||||
|
|
||||||
|
|
||||||
def censor_batch(x):
|
|
||||||
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
|
|
||||||
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy)
|
|
||||||
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
|
|
||||||
|
|
||||||
return x
|
|
281
modules/script_callbacks.py
Normal file
281
modules/script_callbacks.py
Normal file
@ -0,0 +1,281 @@
|
|||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from collections import namedtuple
|
||||||
|
import inspect
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from gradio import Blocks
|
||||||
|
|
||||||
|
|
||||||
|
def report_exception(c, job):
|
||||||
|
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
class ImageSaveParams:
|
||||||
|
def __init__(self, image, p, filename, pnginfo):
|
||||||
|
self.image = image
|
||||||
|
"""the PIL image itself"""
|
||||||
|
|
||||||
|
self.p = p
|
||||||
|
"""p object with processing parameters; either StableDiffusionProcessing or an object with same fields"""
|
||||||
|
|
||||||
|
self.filename = filename
|
||||||
|
"""name of file that the image would be saved to"""
|
||||||
|
|
||||||
|
self.pnginfo = pnginfo
|
||||||
|
"""dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
|
||||||
|
|
||||||
|
|
||||||
|
class CFGDenoiserParams:
|
||||||
|
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
|
||||||
|
self.x = x
|
||||||
|
"""Latent image representation in the process of being denoised"""
|
||||||
|
|
||||||
|
self.image_cond = image_cond
|
||||||
|
"""Conditioning image"""
|
||||||
|
|
||||||
|
self.sigma = sigma
|
||||||
|
"""Current sigma noise step value"""
|
||||||
|
|
||||||
|
self.sampling_step = sampling_step
|
||||||
|
"""Current Sampling step number"""
|
||||||
|
|
||||||
|
self.total_sampling_steps = total_sampling_steps
|
||||||
|
"""Total number of sampling steps planned"""
|
||||||
|
|
||||||
|
|
||||||
|
class UiTrainTabParams:
|
||||||
|
def __init__(self, txt2img_preview_params):
|
||||||
|
self.txt2img_preview_params = txt2img_preview_params
|
||||||
|
|
||||||
|
|
||||||
|
class ImageGridLoopParams:
|
||||||
|
def __init__(self, imgs, cols, rows):
|
||||||
|
self.imgs = imgs
|
||||||
|
self.cols = cols
|
||||||
|
self.rows = rows
|
||||||
|
|
||||||
|
|
||||||
|
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
||||||
|
callback_map = dict(
|
||||||
|
callbacks_app_started=[],
|
||||||
|
callbacks_model_loaded=[],
|
||||||
|
callbacks_ui_tabs=[],
|
||||||
|
callbacks_ui_train_tabs=[],
|
||||||
|
callbacks_ui_settings=[],
|
||||||
|
callbacks_before_image_saved=[],
|
||||||
|
callbacks_image_saved=[],
|
||||||
|
callbacks_cfg_denoiser=[],
|
||||||
|
callbacks_before_component=[],
|
||||||
|
callbacks_after_component=[],
|
||||||
|
callbacks_image_grid=[],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def clear_callbacks():
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
callback_list.clear()
|
||||||
|
|
||||||
|
|
||||||
|
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
|
||||||
|
for c in callback_map['callbacks_app_started']:
|
||||||
|
try:
|
||||||
|
c.callback(demo, app)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'app_started_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def model_loaded_callback(sd_model):
|
||||||
|
for c in callback_map['callbacks_model_loaded']:
|
||||||
|
try:
|
||||||
|
c.callback(sd_model)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'model_loaded_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def ui_tabs_callback():
|
||||||
|
res = []
|
||||||
|
|
||||||
|
for c in callback_map['callbacks_ui_tabs']:
|
||||||
|
try:
|
||||||
|
res += c.callback() or []
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'ui_tabs_callback')
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def ui_train_tabs_callback(params: UiTrainTabParams):
|
||||||
|
for c in callback_map['callbacks_ui_train_tabs']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'callbacks_ui_train_tabs')
|
||||||
|
|
||||||
|
|
||||||
|
def ui_settings_callback():
|
||||||
|
for c in callback_map['callbacks_ui_settings']:
|
||||||
|
try:
|
||||||
|
c.callback()
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'ui_settings_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def before_image_saved_callback(params: ImageSaveParams):
|
||||||
|
for c in callback_map['callbacks_before_image_saved']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'before_image_saved_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def image_saved_callback(params: ImageSaveParams):
|
||||||
|
for c in callback_map['callbacks_image_saved']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'image_saved_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def cfg_denoiser_callback(params: CFGDenoiserParams):
|
||||||
|
for c in callback_map['callbacks_cfg_denoiser']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'cfg_denoiser_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def before_component_callback(component, **kwargs):
|
||||||
|
for c in callback_map['callbacks_before_component']:
|
||||||
|
try:
|
||||||
|
c.callback(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'before_component_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def after_component_callback(component, **kwargs):
|
||||||
|
for c in callback_map['callbacks_after_component']:
|
||||||
|
try:
|
||||||
|
c.callback(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'after_component_callback')
|
||||||
|
|
||||||
|
|
||||||
|
def image_grid_callback(params: ImageGridLoopParams):
|
||||||
|
for c in callback_map['callbacks_image_grid']:
|
||||||
|
try:
|
||||||
|
c.callback(params)
|
||||||
|
except Exception:
|
||||||
|
report_exception(c, 'image_grid')
|
||||||
|
|
||||||
|
|
||||||
|
def add_callback(callbacks, fun):
|
||||||
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||||
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||||
|
|
||||||
|
callbacks.append(ScriptCallback(filename, fun))
|
||||||
|
|
||||||
|
|
||||||
|
def remove_current_script_callbacks():
|
||||||
|
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||||
|
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||||
|
if filename == 'unknown file':
|
||||||
|
return
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
|
||||||
|
callback_list.remove(callback_to_remove)
|
||||||
|
|
||||||
|
|
||||||
|
def remove_callbacks_for_function(callback_func):
|
||||||
|
for callback_list in callback_map.values():
|
||||||
|
for callback_to_remove in [cb for cb in callback_list if cb.callback == callback_func]:
|
||||||
|
callback_list.remove(callback_to_remove)
|
||||||
|
|
||||||
|
|
||||||
|
def on_app_started(callback):
|
||||||
|
"""register a function to be called when the webui started, the gradio `Block` component and
|
||||||
|
fastapi `FastAPI` object are passed as the arguments"""
|
||||||
|
add_callback(callback_map['callbacks_app_started'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_model_loaded(callback):
|
||||||
|
"""register a function to be called when the stable diffusion model is created; the model is
|
||||||
|
passed as an argument"""
|
||||||
|
add_callback(callback_map['callbacks_model_loaded'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_tabs(callback):
|
||||||
|
"""register a function to be called when the UI is creating new tabs.
|
||||||
|
The function must either return a None, which means no new tabs to be added, or a list, where
|
||||||
|
each element is a tuple:
|
||||||
|
(gradio_component, title, elem_id)
|
||||||
|
|
||||||
|
gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
|
||||||
|
title is tab text displayed to user in the UI
|
||||||
|
elem_id is HTML id for the tab
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_ui_tabs'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_train_tabs(callback):
|
||||||
|
"""register a function to be called when the UI is creating new tabs for the train tab.
|
||||||
|
Create your new tabs with gr.Tab.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_ui_train_tabs'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_ui_settings(callback):
|
||||||
|
"""register a function to be called before UI settings are populated; add your settings
|
||||||
|
by using shared.opts.add_option(shared.OptionInfo(...)) """
|
||||||
|
add_callback(callback_map['callbacks_ui_settings'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_before_image_saved(callback):
|
||||||
|
"""register a function to be called before an image is saved to a file.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_before_image_saved'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_image_saved(callback):
|
||||||
|
"""register a function to be called after an image is saved to a file.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_image_saved'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_cfg_denoiser(callback):
|
||||||
|
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_before_component(callback):
|
||||||
|
"""register a function to be called before a component is created.
|
||||||
|
The callback is called with arguments:
|
||||||
|
- component - gradio component that is about to be created.
|
||||||
|
- **kwargs - args to gradio.components.IOComponent.__init__ function
|
||||||
|
|
||||||
|
Use elem_id/label fields of kwargs to figure out which component it is.
|
||||||
|
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_before_component'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_after_component(callback):
|
||||||
|
"""register a function to be called after a component is created. See on_before_component for more."""
|
||||||
|
add_callback(callback_map['callbacks_after_component'], callback)
|
||||||
|
|
||||||
|
|
||||||
|
def on_image_grid(callback):
|
||||||
|
"""register a function to be called before making an image grid.
|
||||||
|
The callback is called with one argument:
|
||||||
|
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
|
||||||
|
"""
|
||||||
|
add_callback(callback_map['callbacks_image_grid'], callback)
|
34
modules/script_loading.py
Normal file
34
modules/script_loading.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
from types import ModuleType
|
||||||
|
|
||||||
|
|
||||||
|
def load_module(path):
|
||||||
|
with open(path, "r", encoding="utf8") as file:
|
||||||
|
text = file.read()
|
||||||
|
|
||||||
|
compiled = compile(text, path, 'exec')
|
||||||
|
module = ModuleType(os.path.basename(path))
|
||||||
|
exec(compiled, module.__dict__)
|
||||||
|
|
||||||
|
return module
|
||||||
|
|
||||||
|
|
||||||
|
def preload_extensions(extensions_dir, parser):
|
||||||
|
if not os.path.isdir(extensions_dir):
|
||||||
|
return
|
||||||
|
|
||||||
|
for dirname in sorted(os.listdir(extensions_dir)):
|
||||||
|
preload_script = os.path.join(extensions_dir, dirname, "preload.py")
|
||||||
|
if not os.path.isfile(preload_script):
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
module = load_module(preload_script)
|
||||||
|
if hasattr(module, 'preload'):
|
||||||
|
module.preload(parser)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running preload() for {preload_script}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
@ -1,83 +1,211 @@
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
import modules.ui as ui
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
from modules.processing import StableDiffusionProcessing
|
from modules.processing import StableDiffusionProcessing
|
||||||
from modules import shared
|
from modules import shared, paths, script_callbacks, extensions, script_loading
|
||||||
|
|
||||||
|
AlwaysVisible = object()
|
||||||
|
|
||||||
|
|
||||||
class Script:
|
class Script:
|
||||||
filename = None
|
filename = None
|
||||||
args_from = None
|
args_from = None
|
||||||
args_to = None
|
args_to = None
|
||||||
|
alwayson = False
|
||||||
|
|
||||||
|
is_txt2img = False
|
||||||
|
is_img2img = False
|
||||||
|
|
||||||
|
"""A gr.Group component that has all script's UI inside it"""
|
||||||
|
group = None
|
||||||
|
|
||||||
|
infotext_fields = None
|
||||||
|
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
|
||||||
|
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
|
||||||
|
"""
|
||||||
|
|
||||||
# The title of the script. This is what will be displayed in the dropdown menu.
|
|
||||||
def title(self):
|
def title(self):
|
||||||
|
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
|
||||||
|
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# How the script is displayed in the UI. See https://gradio.app/docs/#components
|
|
||||||
# for the different UI components you can use and how to create them.
|
|
||||||
# Most UI components can return a value, such as a boolean for a checkbox.
|
|
||||||
# The returned values are passed to the run method as parameters.
|
|
||||||
def ui(self, is_img2img):
|
def ui(self, is_img2img):
|
||||||
|
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
|
||||||
|
The return value should be an array of all components that are used in processing.
|
||||||
|
Values of those returned components will be passed to run() and process() functions.
|
||||||
|
"""
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# Determines when the script should be shown in the dropdown menu via the
|
|
||||||
# returned value. As an example:
|
|
||||||
# is_img2img is True if the current tab is img2img, and False if it is txt2img.
|
|
||||||
# Thus, return is_img2img to only show the script on the img2img tab.
|
|
||||||
def show(self, is_img2img):
|
def show(self, is_img2img):
|
||||||
|
"""
|
||||||
|
is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
|
||||||
|
|
||||||
|
This function should return:
|
||||||
|
- False if the script should not be shown in UI at all
|
||||||
|
- True if the script should be shown in UI if it's selected in the scripts dropdown
|
||||||
|
- script.AlwaysVisible if the script should be shown in UI at all times
|
||||||
|
"""
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
# This is where the additional processing is implemented. The parameters include
|
def run(self, p, *args):
|
||||||
# self, the model object "p" (a StableDiffusionProcessing class, see
|
"""
|
||||||
# processing.py), and the parameters returned by the ui method.
|
This function is called if the script has been selected in the script dropdown.
|
||||||
# Custom functions can be defined here, and additional libraries can be imported
|
It must do all processing and return the Processed object with results, same as
|
||||||
# to be used in processing. The return value should be a Processed object, which is
|
one returned by processing.process_images.
|
||||||
# what is returned by the process_images method.
|
|
||||||
def run(self, *args):
|
Usually the processing is done by calling the processing.process_images function.
|
||||||
|
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
|
|
||||||
# The description method is currently unused.
|
def process(self, p, *args):
|
||||||
# To add a description that appears when hovering over the title, amend the "titles"
|
"""
|
||||||
# dict in script.js to include the script title (returned by title) as a key, and
|
This function is called before processing begins for AlwaysVisible scripts.
|
||||||
# your description as the value.
|
You can modify the processing object (p) here, inject hooks, etc.
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def process_batch(self, p, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Same as process(), but called for every batch.
|
||||||
|
|
||||||
|
**kwargs will have those items:
|
||||||
|
- batch_number - index of current batch, from 0 to number of batches-1
|
||||||
|
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
|
||||||
|
- seeds - list of seeds for current batch
|
||||||
|
- subseeds - list of subseeds for current batch
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def postprocess_batch(self, p, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Same as process_batch(), but called for every batch after it has been generated.
|
||||||
|
|
||||||
|
**kwargs will have same items as process_batch, and also:
|
||||||
|
- batch_number - index of current batch, from 0 to number of batches-1
|
||||||
|
- images - torch tensor with all generated images, with values ranging from 0 to 1;
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def postprocess(self, p, processed, *args):
|
||||||
|
"""
|
||||||
|
This function is called after processing ends for AlwaysVisible scripts.
|
||||||
|
args contains all values returned by components from ui()
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def before_component(self, component, **kwargs):
|
||||||
|
"""
|
||||||
|
Called before a component is created.
|
||||||
|
Use elem_id/label fields of kwargs to figure out which component it is.
|
||||||
|
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
||||||
|
You can return created components in the ui() function to add them to the list of arguments for your processing functions
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def after_component(self, component, **kwargs):
|
||||||
|
"""
|
||||||
|
Called after a component is created. Same as above.
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
def describe(self):
|
def describe(self):
|
||||||
|
"""unused"""
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
|
|
||||||
|
current_basedir = paths.script_path
|
||||||
|
|
||||||
|
|
||||||
|
def basedir():
|
||||||
|
"""returns the base directory for the current script. For scripts in the main scripts directory,
|
||||||
|
this is the main directory (where webui.py resides), and for scripts in extensions directory
|
||||||
|
(ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
|
||||||
|
"""
|
||||||
|
return current_basedir
|
||||||
|
|
||||||
|
|
||||||
scripts_data = []
|
scripts_data = []
|
||||||
|
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
|
||||||
|
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
|
||||||
|
|
||||||
|
|
||||||
def load_scripts(basedir):
|
def list_scripts(scriptdirname, extension):
|
||||||
if not os.path.exists(basedir):
|
scripts_list = []
|
||||||
return
|
|
||||||
|
|
||||||
for filename in sorted(os.listdir(basedir)):
|
basedir = os.path.join(paths.script_path, scriptdirname)
|
||||||
path = os.path.join(basedir, filename)
|
if os.path.exists(basedir):
|
||||||
|
for filename in sorted(os.listdir(basedir)):
|
||||||
|
scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
|
||||||
|
|
||||||
if not os.path.isfile(path):
|
for ext in extensions.active():
|
||||||
|
scripts_list += ext.list_files(scriptdirname, extension)
|
||||||
|
|
||||||
|
scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
|
||||||
|
|
||||||
|
return scripts_list
|
||||||
|
|
||||||
|
|
||||||
|
def list_files_with_name(filename):
|
||||||
|
res = []
|
||||||
|
|
||||||
|
dirs = [paths.script_path] + [ext.path for ext in extensions.active()]
|
||||||
|
|
||||||
|
for dirpath in dirs:
|
||||||
|
if not os.path.isdir(dirpath):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
try:
|
path = os.path.join(dirpath, filename)
|
||||||
with open(path, "r", encoding="utf8") as file:
|
if os.path.isfile(path):
|
||||||
text = file.read()
|
res.append(path)
|
||||||
|
|
||||||
from types import ModuleType
|
return res
|
||||||
compiled = compile(text, path, 'exec')
|
|
||||||
module = ModuleType(filename)
|
|
||||||
exec(compiled, module.__dict__)
|
def load_scripts():
|
||||||
|
global current_basedir
|
||||||
|
scripts_data.clear()
|
||||||
|
script_callbacks.clear_callbacks()
|
||||||
|
|
||||||
|
scripts_list = list_scripts("scripts", ".py")
|
||||||
|
|
||||||
|
syspath = sys.path
|
||||||
|
|
||||||
|
for scriptfile in sorted(scripts_list):
|
||||||
|
try:
|
||||||
|
if scriptfile.basedir != paths.script_path:
|
||||||
|
sys.path = [scriptfile.basedir] + sys.path
|
||||||
|
current_basedir = scriptfile.basedir
|
||||||
|
|
||||||
|
module = script_loading.load_module(scriptfile.path)
|
||||||
|
|
||||||
for key, script_class in module.__dict__.items():
|
for key, script_class in module.__dict__.items():
|
||||||
if type(script_class) == type and issubclass(script_class, Script):
|
if type(script_class) == type and issubclass(script_class, Script):
|
||||||
scripts_data.append((script_class, path))
|
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error loading script: {filename}", file=sys.stderr)
|
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
sys.path = syspath
|
||||||
|
current_basedir = paths.script_path
|
||||||
|
|
||||||
|
|
||||||
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
||||||
try:
|
try:
|
||||||
@ -93,53 +221,94 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
|||||||
class ScriptRunner:
|
class ScriptRunner:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.scripts = []
|
self.scripts = []
|
||||||
|
self.selectable_scripts = []
|
||||||
|
self.alwayson_scripts = []
|
||||||
|
self.titles = []
|
||||||
|
self.infotext_fields = []
|
||||||
|
|
||||||
def setup_ui(self, is_img2img):
|
def initialize_scripts(self, is_img2img):
|
||||||
for script_class, path in scripts_data:
|
self.scripts.clear()
|
||||||
|
self.alwayson_scripts.clear()
|
||||||
|
self.selectable_scripts.clear()
|
||||||
|
|
||||||
|
for script_class, path, basedir in scripts_data:
|
||||||
script = script_class()
|
script = script_class()
|
||||||
script.filename = path
|
script.filename = path
|
||||||
|
script.is_txt2img = not is_img2img
|
||||||
|
script.is_img2img = is_img2img
|
||||||
|
|
||||||
if not script.show(is_img2img):
|
visibility = script.show(script.is_img2img)
|
||||||
continue
|
|
||||||
|
|
||||||
self.scripts.append(script)
|
if visibility == AlwaysVisible:
|
||||||
|
self.scripts.append(script)
|
||||||
|
self.alwayson_scripts.append(script)
|
||||||
|
script.alwayson = True
|
||||||
|
|
||||||
titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
|
elif visibility:
|
||||||
|
self.scripts.append(script)
|
||||||
|
self.selectable_scripts.append(script)
|
||||||
|
|
||||||
dropdown = gr.Dropdown(label="Script", choices=["None"] + titles, value="None", type="index")
|
def setup_ui(self):
|
||||||
inputs = [dropdown]
|
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
|
||||||
|
|
||||||
for script in self.scripts:
|
inputs = [None]
|
||||||
|
inputs_alwayson = [True]
|
||||||
|
|
||||||
|
def create_script_ui(script, inputs, inputs_alwayson):
|
||||||
script.args_from = len(inputs)
|
script.args_from = len(inputs)
|
||||||
script.args_to = len(inputs)
|
script.args_to = len(inputs)
|
||||||
|
|
||||||
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
|
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
|
||||||
|
|
||||||
if controls is None:
|
if controls is None:
|
||||||
continue
|
return
|
||||||
|
|
||||||
for control in controls:
|
for control in controls:
|
||||||
control.custom_script_source = os.path.basename(script.filename)
|
control.custom_script_source = os.path.basename(script.filename)
|
||||||
control.visible = False
|
|
||||||
|
if script.infotext_fields is not None:
|
||||||
|
self.infotext_fields += script.infotext_fields
|
||||||
|
|
||||||
inputs += controls
|
inputs += controls
|
||||||
|
inputs_alwayson += [script.alwayson for _ in controls]
|
||||||
script.args_to = len(inputs)
|
script.args_to = len(inputs)
|
||||||
|
|
||||||
def select_script(script_index):
|
for script in self.alwayson_scripts:
|
||||||
if 0 < script_index <= len(self.scripts):
|
with gr.Group() as group:
|
||||||
script = self.scripts[script_index-1]
|
create_script_ui(script, inputs, inputs_alwayson)
|
||||||
args_from = script.args_from
|
|
||||||
args_to = script.args_to
|
|
||||||
else:
|
|
||||||
args_from = 0
|
|
||||||
args_to = 0
|
|
||||||
|
|
||||||
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
|
script.group = group
|
||||||
|
|
||||||
|
dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
|
||||||
|
dropdown.save_to_config = True
|
||||||
|
inputs[0] = dropdown
|
||||||
|
|
||||||
|
for script in self.selectable_scripts:
|
||||||
|
with gr.Group(visible=False) as group:
|
||||||
|
create_script_ui(script, inputs, inputs_alwayson)
|
||||||
|
|
||||||
|
script.group = group
|
||||||
|
|
||||||
|
def select_script(script_index):
|
||||||
|
selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None
|
||||||
|
|
||||||
|
return [gr.update(visible=selected_script == s) for s in self.selectable_scripts]
|
||||||
|
|
||||||
|
def init_field(title):
|
||||||
|
"""called when an initial value is set from ui-config.json to show script's UI components"""
|
||||||
|
|
||||||
|
if title == 'None':
|
||||||
|
return
|
||||||
|
|
||||||
|
script_index = self.titles.index(title)
|
||||||
|
self.selectable_scripts[script_index].group.visible = True
|
||||||
|
|
||||||
|
dropdown.init_field = init_field
|
||||||
|
|
||||||
dropdown.change(
|
dropdown.change(
|
||||||
fn=select_script,
|
fn=select_script,
|
||||||
inputs=[dropdown],
|
inputs=[dropdown],
|
||||||
outputs=inputs
|
outputs=[script.group for script in self.selectable_scripts]
|
||||||
)
|
)
|
||||||
|
|
||||||
return inputs
|
return inputs
|
||||||
@ -150,7 +319,7 @@ class ScriptRunner:
|
|||||||
if script_index == 0:
|
if script_index == 0:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
script = self.scripts[script_index-1]
|
script = self.selectable_scripts[script_index-1]
|
||||||
|
|
||||||
if script is None:
|
if script is None:
|
||||||
return None
|
return None
|
||||||
@ -162,6 +331,112 @@ class ScriptRunner:
|
|||||||
|
|
||||||
return processed
|
return processed
|
||||||
|
|
||||||
|
def process(self, p):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.process(p, *script_args)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running process: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def process_batch(self, p, **kwargs):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.process_batch(p, *script_args, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running process_batch: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def postprocess(self, p, processed):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.postprocess(p, processed, *script_args)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running postprocess: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def postprocess_batch(self, p, images, **kwargs):
|
||||||
|
for script in self.alwayson_scripts:
|
||||||
|
try:
|
||||||
|
script_args = p.script_args[script.args_from:script.args_to]
|
||||||
|
script.postprocess_batch(p, *script_args, images=images, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def before_component(self, component, **kwargs):
|
||||||
|
for script in self.scripts:
|
||||||
|
try:
|
||||||
|
script.before_component(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running before_component: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def after_component(self, component, **kwargs):
|
||||||
|
for script in self.scripts:
|
||||||
|
try:
|
||||||
|
script.after_component(component, **kwargs)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error running after_component: {script.filename}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
def reload_sources(self, cache):
|
||||||
|
for si, script in list(enumerate(self.scripts)):
|
||||||
|
args_from = script.args_from
|
||||||
|
args_to = script.args_to
|
||||||
|
filename = script.filename
|
||||||
|
|
||||||
|
module = cache.get(filename, None)
|
||||||
|
if module is None:
|
||||||
|
module = script_loading.load_module(script.filename)
|
||||||
|
cache[filename] = module
|
||||||
|
|
||||||
|
for key, script_class in module.__dict__.items():
|
||||||
|
if type(script_class) == type and issubclass(script_class, Script):
|
||||||
|
self.scripts[si] = script_class()
|
||||||
|
self.scripts[si].filename = filename
|
||||||
|
self.scripts[si].args_from = args_from
|
||||||
|
self.scripts[si].args_to = args_to
|
||||||
|
|
||||||
|
|
||||||
scripts_txt2img = ScriptRunner()
|
scripts_txt2img = ScriptRunner()
|
||||||
scripts_img2img = ScriptRunner()
|
scripts_img2img = ScriptRunner()
|
||||||
|
scripts_current: ScriptRunner = None
|
||||||
|
|
||||||
|
|
||||||
|
def reload_script_body_only():
|
||||||
|
cache = {}
|
||||||
|
scripts_txt2img.reload_sources(cache)
|
||||||
|
scripts_img2img.reload_sources(cache)
|
||||||
|
|
||||||
|
|
||||||
|
def reload_scripts():
|
||||||
|
global scripts_txt2img, scripts_img2img
|
||||||
|
|
||||||
|
load_scripts()
|
||||||
|
|
||||||
|
scripts_txt2img = ScriptRunner()
|
||||||
|
scripts_img2img = ScriptRunner()
|
||||||
|
|
||||||
|
|
||||||
|
def IOComponent_init(self, *args, **kwargs):
|
||||||
|
if scripts_current is not None:
|
||||||
|
scripts_current.before_component(self, **kwargs)
|
||||||
|
|
||||||
|
script_callbacks.before_component_callback(self, **kwargs)
|
||||||
|
|
||||||
|
res = original_IOComponent_init(self, *args, **kwargs)
|
||||||
|
|
||||||
|
script_callbacks.after_component_callback(self, **kwargs)
|
||||||
|
|
||||||
|
if scripts_current is not None:
|
||||||
|
scripts_current.after_component(self, **kwargs)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
original_IOComponent_init = gr.components.IOComponent.__init__
|
||||||
|
gr.components.IOComponent.__init__ = IOComponent_init
|
||||||
|
@ -1,264 +1,114 @@
|
|||||||
import math
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
from torch.nn.functional import silu
|
||||||
from torch import einsum
|
|
||||||
|
|
||||||
from modules import prompt_parser
|
import modules.textual_inversion.textual_inversion
|
||||||
from modules.shared import opts, device, cmd_opts
|
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
|
from modules.shared import cmd_opts
|
||||||
|
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
|
||||||
|
|
||||||
|
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
||||||
|
|
||||||
from ldm.util import default
|
|
||||||
from einops import rearrange
|
|
||||||
import ldm.modules.attention
|
import ldm.modules.attention
|
||||||
import ldm.modules.diffusionmodules.model
|
import ldm.modules.diffusionmodules.model
|
||||||
|
import ldm.modules.diffusionmodules.openaimodel
|
||||||
|
import ldm.models.diffusion.ddim
|
||||||
|
import ldm.models.diffusion.plms
|
||||||
|
import ldm.modules.encoders.modules
|
||||||
|
|
||||||
|
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
||||||
|
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
||||||
|
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
||||||
|
|
||||||
|
# new memory efficient cross attention blocks do not support hypernets and we already
|
||||||
|
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
|
||||||
|
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
|
||||||
|
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
|
||||||
|
|
||||||
|
# silence new console spam from SD2
|
||||||
|
ldm.modules.attention.print = lambda *args: None
|
||||||
|
ldm.modules.diffusionmodules.model.print = lambda *args: None
|
||||||
|
|
||||||
|
|
||||||
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
def apply_optimizations():
|
||||||
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
undo_optimizations()
|
||||||
h = self.heads
|
|
||||||
|
|
||||||
q = self.to_q(x)
|
ldm.modules.diffusionmodules.model.nonlinearity = silu
|
||||||
context = default(context, x)
|
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
|
||||||
k = self.to_k(context)
|
|
||||||
v = self.to_v(context)
|
optimization_method = None
|
||||||
del context, x
|
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
|
||||||
|
print("Applying xformers cross attention optimization.")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
|
||||||
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
|
||||||
|
optimization_method = 'xformers'
|
||||||
|
elif cmd_opts.opt_split_attention_v1:
|
||||||
|
print("Applying v1 cross attention optimization.")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||||
|
optimization_method = 'V1'
|
||||||
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
|
||||||
|
if not invokeAI_mps_available and shared.device.type == 'mps':
|
||||||
|
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
|
||||||
|
print("Applying v1 cross attention optimization.")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
|
||||||
|
optimization_method = 'V1'
|
||||||
|
else:
|
||||||
|
print("Applying cross attention optimization (InvokeAI).")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
|
||||||
|
optimization_method = 'InvokeAI'
|
||||||
|
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
||||||
|
print("Applying cross attention optimization (Doggettx).")
|
||||||
|
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
|
||||||
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
|
||||||
|
optimization_method = 'Doggettx'
|
||||||
|
|
||||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
return optimization_method
|
||||||
for i in range(0, q.shape[0], 2):
|
|
||||||
end = i + 2
|
|
||||||
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
|
|
||||||
s1 *= self.scale
|
|
||||||
|
|
||||||
s2 = s1.softmax(dim=-1)
|
|
||||||
del s1
|
|
||||||
|
|
||||||
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
|
|
||||||
del s2
|
|
||||||
|
|
||||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
|
||||||
del r1
|
|
||||||
|
|
||||||
return self.to_out(r2)
|
|
||||||
|
|
||||||
|
|
||||||
# taken from https://github.com/Doggettx/stable-diffusion
|
def undo_optimizations():
|
||||||
def split_cross_attention_forward(self, x, context=None, mask=None):
|
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
||||||
h = self.heads
|
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
||||||
|
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
||||||
|
|
||||||
q_in = self.to_q(x)
|
|
||||||
context = default(context, x)
|
|
||||||
k_in = self.to_k(context) * self.scale
|
|
||||||
v_in = self.to_v(context)
|
|
||||||
del context, x
|
|
||||||
|
|
||||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
def fix_checkpoint():
|
||||||
del q_in, k_in, v_in
|
ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
|
||||||
|
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
|
||||||
|
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
|
||||||
|
|
||||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
|
||||||
|
|
||||||
stats = torch.cuda.memory_stats(q.device)
|
|
||||||
mem_active = stats['active_bytes.all.current']
|
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
|
||||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
|
||||||
mem_free_torch = mem_reserved - mem_active
|
|
||||||
mem_free_total = mem_free_cuda + mem_free_torch
|
|
||||||
|
|
||||||
gb = 1024 ** 3
|
|
||||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
|
||||||
modifier = 3 if q.element_size() == 2 else 2.5
|
|
||||||
mem_required = tensor_size * modifier
|
|
||||||
steps = 1
|
|
||||||
|
|
||||||
if mem_required > mem_free_total:
|
|
||||||
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
|
|
||||||
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
|
||||||
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
|
||||||
|
|
||||||
if steps > 64:
|
|
||||||
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
|
||||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
|
||||||
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
|
|
||||||
|
|
||||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
|
||||||
for i in range(0, q.shape[1], slice_size):
|
|
||||||
end = i + slice_size
|
|
||||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
|
|
||||||
|
|
||||||
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
|
||||||
del s1
|
|
||||||
|
|
||||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
|
||||||
del s2
|
|
||||||
|
|
||||||
del q, k, v
|
|
||||||
|
|
||||||
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
|
||||||
del r1
|
|
||||||
|
|
||||||
return self.to_out(r2)
|
|
||||||
|
|
||||||
def nonlinearity_hijack(x):
|
|
||||||
# swish
|
|
||||||
t = torch.sigmoid(x)
|
|
||||||
x *= t
|
|
||||||
del t
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
def cross_attention_attnblock_forward(self, x):
|
|
||||||
h_ = x
|
|
||||||
h_ = self.norm(h_)
|
|
||||||
q1 = self.q(h_)
|
|
||||||
k1 = self.k(h_)
|
|
||||||
v = self.v(h_)
|
|
||||||
|
|
||||||
# compute attention
|
|
||||||
b, c, h, w = q1.shape
|
|
||||||
|
|
||||||
q2 = q1.reshape(b, c, h*w)
|
|
||||||
del q1
|
|
||||||
|
|
||||||
q = q2.permute(0, 2, 1) # b,hw,c
|
|
||||||
del q2
|
|
||||||
|
|
||||||
k = k1.reshape(b, c, h*w) # b,c,hw
|
|
||||||
del k1
|
|
||||||
|
|
||||||
h_ = torch.zeros_like(k, device=q.device)
|
|
||||||
|
|
||||||
stats = torch.cuda.memory_stats(q.device)
|
|
||||||
mem_active = stats['active_bytes.all.current']
|
|
||||||
mem_reserved = stats['reserved_bytes.all.current']
|
|
||||||
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
|
||||||
mem_free_torch = mem_reserved - mem_active
|
|
||||||
mem_free_total = mem_free_cuda + mem_free_torch
|
|
||||||
|
|
||||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
|
||||||
mem_required = tensor_size * 2.5
|
|
||||||
steps = 1
|
|
||||||
|
|
||||||
if mem_required > mem_free_total:
|
|
||||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
|
||||||
|
|
||||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
|
||||||
for i in range(0, q.shape[1], slice_size):
|
|
||||||
end = i + slice_size
|
|
||||||
|
|
||||||
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
|
||||||
w2 = w1 * (int(c)**(-0.5))
|
|
||||||
del w1
|
|
||||||
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
|
|
||||||
del w2
|
|
||||||
|
|
||||||
# attend to values
|
|
||||||
v1 = v.reshape(b, c, h*w)
|
|
||||||
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
|
||||||
del w3
|
|
||||||
|
|
||||||
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
|
||||||
del v1, w4
|
|
||||||
|
|
||||||
h2 = h_.reshape(b, c, h, w)
|
|
||||||
del h_
|
|
||||||
|
|
||||||
h3 = self.proj_out(h2)
|
|
||||||
del h2
|
|
||||||
|
|
||||||
h3 += x
|
|
||||||
|
|
||||||
return h3
|
|
||||||
|
|
||||||
class StableDiffusionModelHijack:
|
class StableDiffusionModelHijack:
|
||||||
ids_lookup = {}
|
|
||||||
word_embeddings = {}
|
|
||||||
word_embeddings_checksums = {}
|
|
||||||
fixes = None
|
fixes = None
|
||||||
comments = []
|
comments = []
|
||||||
dir_mtime = None
|
|
||||||
layers = None
|
layers = None
|
||||||
circular_enabled = False
|
circular_enabled = False
|
||||||
clip = None
|
clip = None
|
||||||
|
optimization_method = None
|
||||||
|
|
||||||
def load_textual_inversion_embeddings(self, dirname, model):
|
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
||||||
mt = os.path.getmtime(dirname)
|
|
||||||
if self.dir_mtime is not None and mt <= self.dir_mtime:
|
|
||||||
return
|
|
||||||
|
|
||||||
self.dir_mtime = mt
|
|
||||||
self.ids_lookup.clear()
|
|
||||||
self.word_embeddings.clear()
|
|
||||||
|
|
||||||
tokenizer = model.cond_stage_model.tokenizer
|
|
||||||
|
|
||||||
def const_hash(a):
|
|
||||||
r = 0
|
|
||||||
for v in a:
|
|
||||||
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
|
||||||
return r
|
|
||||||
|
|
||||||
def process_file(path, filename):
|
|
||||||
name = os.path.splitext(filename)[0]
|
|
||||||
|
|
||||||
data = torch.load(path, map_location="cpu")
|
|
||||||
|
|
||||||
# textual inversion embeddings
|
|
||||||
if 'string_to_param' in data:
|
|
||||||
param_dict = data['string_to_param']
|
|
||||||
if hasattr(param_dict, '_parameters'):
|
|
||||||
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
|
||||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
|
||||||
emb = next(iter(param_dict.items()))[1]
|
|
||||||
# diffuser concepts
|
|
||||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
|
||||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
|
||||||
|
|
||||||
emb = next(iter(data.values()))
|
|
||||||
if len(emb.shape) == 1:
|
|
||||||
emb = emb.unsqueeze(0)
|
|
||||||
|
|
||||||
self.word_embeddings[name] = emb.detach().to(device)
|
|
||||||
self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}'
|
|
||||||
|
|
||||||
ids = tokenizer([name], add_special_tokens=False)['input_ids'][0]
|
|
||||||
|
|
||||||
first_id = ids[0]
|
|
||||||
if first_id not in self.ids_lookup:
|
|
||||||
self.ids_lookup[first_id] = []
|
|
||||||
self.ids_lookup[first_id].append((ids, name))
|
|
||||||
|
|
||||||
for fn in os.listdir(dirname):
|
|
||||||
try:
|
|
||||||
fullfn = os.path.join(dirname, fn)
|
|
||||||
|
|
||||||
if os.stat(fullfn).st_size == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
process_file(fullfn, fn)
|
|
||||||
except Exception:
|
|
||||||
print(f"Error loading emedding {fn}:", file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
continue
|
|
||||||
|
|
||||||
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
|
|
||||||
|
|
||||||
def hijack(self, m):
|
def hijack(self, m):
|
||||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
|
||||||
|
|
||||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||||
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||||
|
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
|
||||||
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||||
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||||
|
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
|
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
|
||||||
|
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
|
||||||
|
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||||
|
|
||||||
|
self.optimization_method = apply_optimizations()
|
||||||
|
|
||||||
self.clip = m.cond_stage_model
|
self.clip = m.cond_stage_model
|
||||||
|
|
||||||
if cmd_opts.opt_split_attention_v1:
|
fix_checkpoint()
|
||||||
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
|
|
||||||
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
|
|
||||||
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
|
|
||||||
ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack
|
|
||||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
|
|
||||||
|
|
||||||
def flatten(el):
|
def flatten(el):
|
||||||
flattened = [flatten(children) for children in el.children()]
|
flattened = [flatten(children) for children in el.children()]
|
||||||
@ -270,12 +120,23 @@ class StableDiffusionModelHijack:
|
|||||||
self.layers = flatten(m)
|
self.layers = flatten(m)
|
||||||
|
|
||||||
def undo_hijack(self, m):
|
def undo_hijack(self, m):
|
||||||
if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
|
|
||||||
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||||
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
||||||
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
||||||
|
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
|
||||||
|
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
|
||||||
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
self.apply_circular(False)
|
||||||
|
self.layers = None
|
||||||
|
self.clip = None
|
||||||
|
|
||||||
def apply_circular(self, enable):
|
def apply_circular(self, enable):
|
||||||
if self.circular_enabled == enable:
|
if self.circular_enabled == enable:
|
||||||
@ -286,223 +147,13 @@ class StableDiffusionModelHijack:
|
|||||||
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
|
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
|
||||||
layer.padding_mode = 'circular' if enable else 'zeros'
|
layer.padding_mode = 'circular' if enable else 'zeros'
|
||||||
|
|
||||||
|
def clear_comments(self):
|
||||||
|
self.comments = []
|
||||||
|
|
||||||
def tokenize(self, text):
|
def tokenize(self, text):
|
||||||
max_length = self.clip.max_length - 2
|
|
||||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||||
return remade_batch_tokens[0], token_count, max_length
|
|
||||||
|
|
||||||
|
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
|
||||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|
||||||
def __init__(self, wrapped, hijack):
|
|
||||||
super().__init__()
|
|
||||||
self.wrapped = wrapped
|
|
||||||
self.hijack = hijack
|
|
||||||
self.tokenizer = wrapped.tokenizer
|
|
||||||
self.max_length = wrapped.max_length
|
|
||||||
self.token_mults = {}
|
|
||||||
|
|
||||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
|
||||||
for text, ident in tokens_with_parens:
|
|
||||||
mult = 1.0
|
|
||||||
for c in text:
|
|
||||||
if c == '[':
|
|
||||||
mult /= 1.1
|
|
||||||
if c == ']':
|
|
||||||
mult *= 1.1
|
|
||||||
if c == '(':
|
|
||||||
mult *= 1.1
|
|
||||||
if c == ')':
|
|
||||||
mult /= 1.1
|
|
||||||
|
|
||||||
if mult != 1.0:
|
|
||||||
self.token_mults[ident] = mult
|
|
||||||
|
|
||||||
|
|
||||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
|
||||||
id_start = self.wrapped.tokenizer.bos_token_id
|
|
||||||
id_end = self.wrapped.tokenizer.eos_token_id
|
|
||||||
maxlen = self.wrapped.max_length
|
|
||||||
|
|
||||||
if opts.enable_emphasis:
|
|
||||||
parsed = prompt_parser.parse_prompt_attention(line)
|
|
||||||
else:
|
|
||||||
parsed = [[line, 1.0]]
|
|
||||||
|
|
||||||
tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
|
|
||||||
|
|
||||||
fixes = []
|
|
||||||
remade_tokens = []
|
|
||||||
multipliers = []
|
|
||||||
|
|
||||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
|
||||||
i = 0
|
|
||||||
while i < len(tokens):
|
|
||||||
token = tokens[i]
|
|
||||||
|
|
||||||
possible_matches = self.hijack.ids_lookup.get(token, None)
|
|
||||||
|
|
||||||
if possible_matches is None:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(weight)
|
|
||||||
else:
|
|
||||||
found = False
|
|
||||||
for ids, word in possible_matches:
|
|
||||||
if tokens[i:i + len(ids)] == ids:
|
|
||||||
emb_len = int(self.hijack.word_embeddings[word].shape[0])
|
|
||||||
fixes.append((len(remade_tokens), word))
|
|
||||||
remade_tokens += [0] * emb_len
|
|
||||||
multipliers += [weight] * emb_len
|
|
||||||
i += len(ids) - 1
|
|
||||||
found = True
|
|
||||||
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
|
|
||||||
break
|
|
||||||
|
|
||||||
if not found:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(weight)
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
if len(remade_tokens) > maxlen - 2:
|
|
||||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
|
||||||
ovf = remade_tokens[maxlen - 2:]
|
|
||||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
|
||||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
|
||||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
|
||||||
|
|
||||||
token_count = len(remade_tokens)
|
|
||||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
|
||||||
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
|
||||||
|
|
||||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
|
||||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
|
||||||
|
|
||||||
return remade_tokens, fixes, multipliers, token_count
|
|
||||||
|
|
||||||
def process_text(self, texts):
|
|
||||||
used_custom_terms = []
|
|
||||||
remade_batch_tokens = []
|
|
||||||
hijack_comments = []
|
|
||||||
hijack_fixes = []
|
|
||||||
token_count = 0
|
|
||||||
|
|
||||||
cache = {}
|
|
||||||
batch_multipliers = []
|
|
||||||
for line in texts:
|
|
||||||
if line in cache:
|
|
||||||
remade_tokens, fixes, multipliers = cache[line]
|
|
||||||
else:
|
|
||||||
remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
|
||||||
|
|
||||||
cache[line] = (remade_tokens, fixes, multipliers)
|
|
||||||
|
|
||||||
remade_batch_tokens.append(remade_tokens)
|
|
||||||
hijack_fixes.append(fixes)
|
|
||||||
batch_multipliers.append(multipliers)
|
|
||||||
|
|
||||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
|
||||||
|
|
||||||
|
|
||||||
def process_text_old(self, text):
|
|
||||||
id_start = self.wrapped.tokenizer.bos_token_id
|
|
||||||
id_end = self.wrapped.tokenizer.eos_token_id
|
|
||||||
maxlen = self.wrapped.max_length
|
|
||||||
used_custom_terms = []
|
|
||||||
remade_batch_tokens = []
|
|
||||||
overflowing_words = []
|
|
||||||
hijack_comments = []
|
|
||||||
hijack_fixes = []
|
|
||||||
token_count = 0
|
|
||||||
|
|
||||||
cache = {}
|
|
||||||
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
|
|
||||||
batch_multipliers = []
|
|
||||||
for tokens in batch_tokens:
|
|
||||||
tuple_tokens = tuple(tokens)
|
|
||||||
|
|
||||||
if tuple_tokens in cache:
|
|
||||||
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
|
||||||
else:
|
|
||||||
fixes = []
|
|
||||||
remade_tokens = []
|
|
||||||
multipliers = []
|
|
||||||
mult = 1.0
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
while i < len(tokens):
|
|
||||||
token = tokens[i]
|
|
||||||
|
|
||||||
possible_matches = self.hijack.ids_lookup.get(token, None)
|
|
||||||
|
|
||||||
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
|
||||||
if mult_change is not None:
|
|
||||||
mult *= mult_change
|
|
||||||
elif possible_matches is None:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(mult)
|
|
||||||
else:
|
|
||||||
found = False
|
|
||||||
for ids, word in possible_matches:
|
|
||||||
if tokens[i:i+len(ids)] == ids:
|
|
||||||
emb_len = int(self.hijack.word_embeddings[word].shape[0])
|
|
||||||
fixes.append((len(remade_tokens), word))
|
|
||||||
remade_tokens += [0] * emb_len
|
|
||||||
multipliers += [mult] * emb_len
|
|
||||||
i += len(ids) - 1
|
|
||||||
found = True
|
|
||||||
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
|
|
||||||
break
|
|
||||||
|
|
||||||
if not found:
|
|
||||||
remade_tokens.append(token)
|
|
||||||
multipliers.append(mult)
|
|
||||||
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
if len(remade_tokens) > maxlen - 2:
|
|
||||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
|
||||||
ovf = remade_tokens[maxlen - 2:]
|
|
||||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
|
||||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
|
||||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
|
||||||
token_count = len(remade_tokens)
|
|
||||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
|
||||||
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
|
|
||||||
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
|
||||||
|
|
||||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
|
||||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
|
||||||
|
|
||||||
remade_batch_tokens.append(remade_tokens)
|
|
||||||
hijack_fixes.append(fixes)
|
|
||||||
batch_multipliers.append(multipliers)
|
|
||||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
|
||||||
|
|
||||||
def forward(self, text):
|
|
||||||
|
|
||||||
if opts.use_old_emphasis_implementation:
|
|
||||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
|
||||||
else:
|
|
||||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
|
||||||
|
|
||||||
|
|
||||||
self.hijack.fixes = hijack_fixes
|
|
||||||
self.hijack.comments = hijack_comments
|
|
||||||
|
|
||||||
if len(used_custom_terms) > 0:
|
|
||||||
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
|
||||||
|
|
||||||
tokens = torch.asarray(remade_batch_tokens).to(device)
|
|
||||||
outputs = self.wrapped.transformer(input_ids=tokens)
|
|
||||||
z = outputs.last_hidden_state
|
|
||||||
|
|
||||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
|
||||||
batch_multipliers = torch.asarray(batch_multipliers).to(device)
|
|
||||||
original_mean = z.mean()
|
|
||||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
|
||||||
new_mean = z.mean()
|
|
||||||
z *= original_mean / new_mean
|
|
||||||
|
|
||||||
return z
|
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingsWithFixes(torch.nn.Module):
|
class EmbeddingsWithFixes(torch.nn.Module):
|
||||||
@ -517,14 +168,19 @@ class EmbeddingsWithFixes(torch.nn.Module):
|
|||||||
|
|
||||||
inputs_embeds = self.wrapped(input_ids)
|
inputs_embeds = self.wrapped(input_ids)
|
||||||
|
|
||||||
if batch_fixes is not None:
|
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
|
||||||
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
return inputs_embeds
|
||||||
for offset, word in fixes:
|
|
||||||
emb = self.embeddings.word_embeddings[word]
|
|
||||||
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
|
|
||||||
tensor[offset+1:offset+1+emb_len] = self.embeddings.word_embeddings[word][0:emb_len]
|
|
||||||
|
|
||||||
return inputs_embeds
|
vecs = []
|
||||||
|
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
||||||
|
for offset, embedding in fixes:
|
||||||
|
emb = embedding.vec
|
||||||
|
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
|
||||||
|
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
|
||||||
|
|
||||||
|
vecs.append(tensor)
|
||||||
|
|
||||||
|
return torch.stack(vecs)
|
||||||
|
|
||||||
|
|
||||||
def add_circular_option_to_conv_2d():
|
def add_circular_option_to_conv_2d():
|
||||||
@ -537,3 +193,19 @@ def add_circular_option_to_conv_2d():
|
|||||||
|
|
||||||
|
|
||||||
model_hijack = StableDiffusionModelHijack()
|
model_hijack = StableDiffusionModelHijack()
|
||||||
|
|
||||||
|
|
||||||
|
def register_buffer(self, name, attr):
|
||||||
|
"""
|
||||||
|
Fix register buffer bug for Mac OS.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if type(attr) == torch.Tensor:
|
||||||
|
if attr.device != devices.device:
|
||||||
|
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
|
||||||
|
|
||||||
|
setattr(self, name, attr)
|
||||||
|
|
||||||
|
|
||||||
|
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
|
||||||
|
10
modules/sd_hijack_checkpoint.py
Normal file
10
modules/sd_hijack_checkpoint.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from torch.utils.checkpoint import checkpoint
|
||||||
|
|
||||||
|
def BasicTransformerBlock_forward(self, x, context=None):
|
||||||
|
return checkpoint(self._forward, x, context)
|
||||||
|
|
||||||
|
def AttentionBlock_forward(self, x):
|
||||||
|
return checkpoint(self._forward, x)
|
||||||
|
|
||||||
|
def ResBlock_forward(self, x, emb):
|
||||||
|
return checkpoint(self._forward, x, emb)
|
303
modules/sd_hijack_clip.py
Normal file
303
modules/sd_hijack_clip.py
Normal file
@ -0,0 +1,303 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import prompt_parser, devices
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
def get_target_prompt_token_count(token_count):
|
||||||
|
return math.ceil(max(token_count, 1) / 75) * 75
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__()
|
||||||
|
self.wrapped = wrapped
|
||||||
|
self.hijack = hijack
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
||||||
|
if opts.enable_emphasis:
|
||||||
|
parsed = prompt_parser.parse_prompt_attention(line)
|
||||||
|
else:
|
||||||
|
parsed = [[line, 1.0]]
|
||||||
|
|
||||||
|
tokenized = self.tokenize([text for text, _ in parsed])
|
||||||
|
|
||||||
|
fixes = []
|
||||||
|
remade_tokens = []
|
||||||
|
multipliers = []
|
||||||
|
last_comma = -1
|
||||||
|
|
||||||
|
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||||
|
i = 0
|
||||||
|
while i < len(tokens):
|
||||||
|
token = tokens[i]
|
||||||
|
|
||||||
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||||
|
|
||||||
|
if token == self.comma_token:
|
||||||
|
last_comma = len(remade_tokens)
|
||||||
|
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||||
|
last_comma += 1
|
||||||
|
reloc_tokens = remade_tokens[last_comma:]
|
||||||
|
reloc_mults = multipliers[last_comma:]
|
||||||
|
|
||||||
|
remade_tokens = remade_tokens[:last_comma]
|
||||||
|
length = len(remade_tokens)
|
||||||
|
|
||||||
|
rem = int(math.ceil(length / 75)) * 75 - length
|
||||||
|
remade_tokens += [self.id_end] * rem + reloc_tokens
|
||||||
|
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
||||||
|
|
||||||
|
if embedding is None:
|
||||||
|
remade_tokens.append(token)
|
||||||
|
multipliers.append(weight)
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
emb_len = int(embedding.vec.shape[0])
|
||||||
|
iteration = len(remade_tokens) // 75
|
||||||
|
if (len(remade_tokens) + emb_len) // 75 != iteration:
|
||||||
|
rem = (75 * (iteration + 1) - len(remade_tokens))
|
||||||
|
remade_tokens += [self.id_end] * rem
|
||||||
|
multipliers += [1.0] * rem
|
||||||
|
iteration += 1
|
||||||
|
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
||||||
|
remade_tokens += [0] * emb_len
|
||||||
|
multipliers += [weight] * emb_len
|
||||||
|
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||||
|
i += embedding_length_in_tokens
|
||||||
|
|
||||||
|
token_count = len(remade_tokens)
|
||||||
|
prompt_target_length = get_target_prompt_token_count(token_count)
|
||||||
|
tokens_to_add = prompt_target_length - len(remade_tokens)
|
||||||
|
|
||||||
|
remade_tokens = remade_tokens + [self.id_end] * tokens_to_add
|
||||||
|
multipliers = multipliers + [1.0] * tokens_to_add
|
||||||
|
|
||||||
|
return remade_tokens, fixes, multipliers, token_count
|
||||||
|
|
||||||
|
def process_text(self, texts):
|
||||||
|
used_custom_terms = []
|
||||||
|
remade_batch_tokens = []
|
||||||
|
hijack_comments = []
|
||||||
|
hijack_fixes = []
|
||||||
|
token_count = 0
|
||||||
|
|
||||||
|
cache = {}
|
||||||
|
batch_multipliers = []
|
||||||
|
for line in texts:
|
||||||
|
if line in cache:
|
||||||
|
remade_tokens, fixes, multipliers = cache[line]
|
||||||
|
else:
|
||||||
|
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
||||||
|
token_count = max(current_token_count, token_count)
|
||||||
|
|
||||||
|
cache[line] = (remade_tokens, fixes, multipliers)
|
||||||
|
|
||||||
|
remade_batch_tokens.append(remade_tokens)
|
||||||
|
hijack_fixes.append(fixes)
|
||||||
|
batch_multipliers.append(multipliers)
|
||||||
|
|
||||||
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||||
|
|
||||||
|
def process_text_old(self, texts):
|
||||||
|
id_start = self.id_start
|
||||||
|
id_end = self.id_end
|
||||||
|
maxlen = self.wrapped.max_length # you get to stay at 77
|
||||||
|
used_custom_terms = []
|
||||||
|
remade_batch_tokens = []
|
||||||
|
hijack_comments = []
|
||||||
|
hijack_fixes = []
|
||||||
|
token_count = 0
|
||||||
|
|
||||||
|
cache = {}
|
||||||
|
batch_tokens = self.tokenize(texts)
|
||||||
|
batch_multipliers = []
|
||||||
|
for tokens in batch_tokens:
|
||||||
|
tuple_tokens = tuple(tokens)
|
||||||
|
|
||||||
|
if tuple_tokens in cache:
|
||||||
|
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
||||||
|
else:
|
||||||
|
fixes = []
|
||||||
|
remade_tokens = []
|
||||||
|
multipliers = []
|
||||||
|
mult = 1.0
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
while i < len(tokens):
|
||||||
|
token = tokens[i]
|
||||||
|
|
||||||
|
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||||
|
|
||||||
|
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
||||||
|
if mult_change is not None:
|
||||||
|
mult *= mult_change
|
||||||
|
i += 1
|
||||||
|
elif embedding is None:
|
||||||
|
remade_tokens.append(token)
|
||||||
|
multipliers.append(mult)
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
emb_len = int(embedding.vec.shape[0])
|
||||||
|
fixes.append((len(remade_tokens), embedding))
|
||||||
|
remade_tokens += [0] * emb_len
|
||||||
|
multipliers += [mult] * emb_len
|
||||||
|
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||||
|
i += embedding_length_in_tokens
|
||||||
|
|
||||||
|
if len(remade_tokens) > maxlen - 2:
|
||||||
|
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||||
|
ovf = remade_tokens[maxlen - 2:]
|
||||||
|
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||||
|
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||||
|
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||||
|
|
||||||
|
token_count = len(remade_tokens)
|
||||||
|
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||||
|
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
||||||
|
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
||||||
|
|
||||||
|
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
||||||
|
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||||
|
|
||||||
|
remade_batch_tokens.append(remade_tokens)
|
||||||
|
hijack_fixes.append(fixes)
|
||||||
|
batch_multipliers.append(multipliers)
|
||||||
|
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||||
|
|
||||||
|
def forward(self, text):
|
||||||
|
use_old = opts.use_old_emphasis_implementation
|
||||||
|
if use_old:
|
||||||
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
||||||
|
else:
|
||||||
|
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
||||||
|
|
||||||
|
self.hijack.comments += hijack_comments
|
||||||
|
|
||||||
|
if len(used_custom_terms) > 0:
|
||||||
|
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||||
|
|
||||||
|
if use_old:
|
||||||
|
self.hijack.fixes = hijack_fixes
|
||||||
|
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
||||||
|
|
||||||
|
z = None
|
||||||
|
i = 0
|
||||||
|
while max(map(len, remade_batch_tokens)) != 0:
|
||||||
|
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
||||||
|
rem_multipliers = [x[75:] for x in batch_multipliers]
|
||||||
|
|
||||||
|
self.hijack.fixes = []
|
||||||
|
for unfiltered in hijack_fixes:
|
||||||
|
fixes = []
|
||||||
|
for fix in unfiltered:
|
||||||
|
if fix[0] == i:
|
||||||
|
fixes.append(fix[1])
|
||||||
|
self.hijack.fixes.append(fixes)
|
||||||
|
|
||||||
|
tokens = []
|
||||||
|
multipliers = []
|
||||||
|
for j in range(len(remade_batch_tokens)):
|
||||||
|
if len(remade_batch_tokens[j]) > 0:
|
||||||
|
tokens.append(remade_batch_tokens[j][:75])
|
||||||
|
multipliers.append(batch_multipliers[j][:75])
|
||||||
|
else:
|
||||||
|
tokens.append([self.id_end] * 75)
|
||||||
|
multipliers.append([1.0] * 75)
|
||||||
|
|
||||||
|
z1 = self.process_tokens(tokens, multipliers)
|
||||||
|
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||||
|
|
||||||
|
remade_batch_tokens = rem_tokens
|
||||||
|
batch_multipliers = rem_multipliers
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
||||||
|
if not opts.use_old_emphasis_implementation:
|
||||||
|
remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens]
|
||||||
|
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
||||||
|
|
||||||
|
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
|
||||||
|
|
||||||
|
if self.id_end != self.id_pad:
|
||||||
|
for batch_pos in range(len(remade_batch_tokens)):
|
||||||
|
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
||||||
|
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
|
||||||
|
|
||||||
|
z = self.encode_with_transformers(tokens)
|
||||||
|
|
||||||
|
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||||
|
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
||||||
|
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device)
|
||||||
|
original_mean = z.mean()
|
||||||
|
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||||
|
new_mean = z.mean()
|
||||||
|
z *= original_mean / new_mean
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
self.tokenizer = wrapped.tokenizer
|
||||||
|
|
||||||
|
vocab = self.tokenizer.get_vocab()
|
||||||
|
|
||||||
|
self.comma_token = vocab.get(',</w>', None)
|
||||||
|
|
||||||
|
self.token_mults = {}
|
||||||
|
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||||
|
for text, ident in tokens_with_parens:
|
||||||
|
mult = 1.0
|
||||||
|
for c in text:
|
||||||
|
if c == '[':
|
||||||
|
mult /= 1.1
|
||||||
|
if c == ']':
|
||||||
|
mult *= 1.1
|
||||||
|
if c == '(':
|
||||||
|
mult *= 1.1
|
||||||
|
if c == ')':
|
||||||
|
mult /= 1.1
|
||||||
|
|
||||||
|
if mult != 1.0:
|
||||||
|
self.token_mults[ident] = mult
|
||||||
|
|
||||||
|
self.id_start = self.wrapped.tokenizer.bos_token_id
|
||||||
|
self.id_end = self.wrapped.tokenizer.eos_token_id
|
||||||
|
self.id_pad = self.id_end
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
|
||||||
|
|
||||||
|
return tokenized
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||||
|
|
||||||
|
if opts.CLIP_stop_at_last_layers > 1:
|
||||||
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||||
|
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||||
|
else:
|
||||||
|
z = outputs.last_hidden_state
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
embedding_layer = self.wrapped.transformer.text_model.embeddings
|
||||||
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||||
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
111
modules/sd_hijack_inpainting.py
Normal file
111
modules/sd_hijack_inpainting.py
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
import os
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from einops import repeat
|
||||||
|
from omegaconf import ListConfig
|
||||||
|
|
||||||
|
import ldm.models.diffusion.ddpm
|
||||||
|
import ldm.models.diffusion.ddim
|
||||||
|
import ldm.models.diffusion.plms
|
||||||
|
|
||||||
|
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||||
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
|
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
|
||||||
|
b, *_, device = *x.shape, x.device
|
||||||
|
|
||||||
|
def get_model_output(x, t):
|
||||||
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||||
|
e_t = self.model.apply_model(x, t, c)
|
||||||
|
else:
|
||||||
|
x_in = torch.cat([x] * 2)
|
||||||
|
t_in = torch.cat([t] * 2)
|
||||||
|
|
||||||
|
if isinstance(c, dict):
|
||||||
|
assert isinstance(unconditional_conditioning, dict)
|
||||||
|
c_in = dict()
|
||||||
|
for k in c:
|
||||||
|
if isinstance(c[k], list):
|
||||||
|
c_in[k] = [
|
||||||
|
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
||||||
|
for i in range(len(c[k]))
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
||||||
|
else:
|
||||||
|
c_in = torch.cat([unconditional_conditioning, c])
|
||||||
|
|
||||||
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||||
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||||
|
|
||||||
|
if score_corrector is not None:
|
||||||
|
assert self.model.parameterization == "eps"
|
||||||
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||||
|
|
||||||
|
return e_t
|
||||||
|
|
||||||
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||||
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||||
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||||
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||||
|
|
||||||
|
def get_x_prev_and_pred_x0(e_t, index):
|
||||||
|
# select parameters corresponding to the currently considered timestep
|
||||||
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||||
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||||
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||||
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||||
|
|
||||||
|
# current prediction for x_0
|
||||||
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||||
|
if quantize_denoised:
|
||||||
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||||
|
if dynamic_threshold is not None:
|
||||||
|
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||||
|
# direction pointing to x_t
|
||||||
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
|
if noise_dropout > 0.:
|
||||||
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||||
|
return x_prev, pred_x0
|
||||||
|
|
||||||
|
e_t = get_model_output(x, t)
|
||||||
|
if len(old_eps) == 0:
|
||||||
|
# Pseudo Improved Euler (2nd order)
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||||
|
e_t_next = get_model_output(x_prev, t_next)
|
||||||
|
e_t_prime = (e_t + e_t_next) / 2
|
||||||
|
elif len(old_eps) == 1:
|
||||||
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||||
|
elif len(old_eps) == 2:
|
||||||
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||||
|
elif len(old_eps) >= 3:
|
||||||
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||||
|
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||||
|
|
||||||
|
return x_prev, pred_x0, e_t
|
||||||
|
|
||||||
|
|
||||||
|
def should_hijack_inpainting(checkpoint_info):
|
||||||
|
from modules import sd_models
|
||||||
|
|
||||||
|
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
|
||||||
|
cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
|
||||||
|
|
||||||
|
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
|
||||||
|
|
||||||
|
|
||||||
|
def do_inpainting_hijack():
|
||||||
|
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
|
||||||
|
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
|
37
modules/sd_hijack_open_clip.py
Normal file
37
modules/sd_hijack_open_clip.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
import open_clip.tokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import sd_hijack_clip, devices
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
tokenizer = open_clip.tokenizer._tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
|
||||||
|
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
|
||||||
|
self.id_start = tokenizer.encoder["<start_of_text>"]
|
||||||
|
self.id_end = tokenizer.encoder["<end_of_text>"]
|
||||||
|
self.id_pad = 0
|
||||||
|
|
||||||
|
def tokenize(self, texts):
|
||||||
|
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
||||||
|
|
||||||
|
tokenized = [tokenizer.encode(text) for text in texts]
|
||||||
|
|
||||||
|
return tokenized
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
# set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
|
||||||
|
z = self.wrapped.encode_with_transformer(tokens)
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
ids = tokenizer.encode(init_text)
|
||||||
|
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
||||||
|
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
314
modules/sd_hijack_optimizations.py
Normal file
314
modules/sd_hijack_optimizations.py
Normal file
@ -0,0 +1,314 @@
|
|||||||
|
import math
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import einsum
|
||||||
|
|
||||||
|
from ldm.util import default
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
from modules import shared
|
||||||
|
from modules.hypernetworks import hypernetwork
|
||||||
|
|
||||||
|
|
||||||
|
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
|
||||||
|
try:
|
||||||
|
import xformers.ops
|
||||||
|
shared.xformers_available = True
|
||||||
|
except Exception:
|
||||||
|
print("Cannot import xformers", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
|
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
|
||||||
|
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q_in = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k_in = self.to_k(context_k)
|
||||||
|
v_in = self.to_v(context_v)
|
||||||
|
del context, context_k, context_v, x
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||||
|
del q_in, k_in, v_in
|
||||||
|
|
||||||
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||||
|
for i in range(0, q.shape[0], 2):
|
||||||
|
end = i + 2
|
||||||
|
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
|
||||||
|
s1 *= self.scale
|
||||||
|
|
||||||
|
s2 = s1.softmax(dim=-1)
|
||||||
|
del s1
|
||||||
|
|
||||||
|
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
|
||||||
|
del s2
|
||||||
|
del q, k, v
|
||||||
|
|
||||||
|
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||||
|
del r1
|
||||||
|
|
||||||
|
return self.to_out(r2)
|
||||||
|
|
||||||
|
|
||||||
|
# taken from https://github.com/Doggettx/stable-diffusion and modified
|
||||||
|
def split_cross_attention_forward(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q_in = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k_in = self.to_k(context_k)
|
||||||
|
v_in = self.to_v(context_v)
|
||||||
|
|
||||||
|
k_in *= self.scale
|
||||||
|
|
||||||
|
del context, x
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||||
|
del q_in, k_in, v_in
|
||||||
|
|
||||||
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
|
||||||
|
stats = torch.cuda.memory_stats(q.device)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
|
||||||
|
gb = 1024 ** 3
|
||||||
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
||||||
|
modifier = 3 if q.element_size() == 2 else 2.5
|
||||||
|
mem_required = tensor_size * modifier
|
||||||
|
steps = 1
|
||||||
|
|
||||||
|
if mem_required > mem_free_total:
|
||||||
|
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||||
|
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
||||||
|
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
||||||
|
|
||||||
|
if steps > 64:
|
||||||
|
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
||||||
|
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||||
|
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
|
||||||
|
|
||||||
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||||
|
for i in range(0, q.shape[1], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
|
||||||
|
|
||||||
|
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
||||||
|
del s1
|
||||||
|
|
||||||
|
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||||
|
del s2
|
||||||
|
|
||||||
|
del q, k, v
|
||||||
|
|
||||||
|
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
|
||||||
|
del r1
|
||||||
|
|
||||||
|
return self.to_out(r2)
|
||||||
|
|
||||||
|
|
||||||
|
def check_for_psutil():
|
||||||
|
try:
|
||||||
|
spec = importlib.util.find_spec('psutil')
|
||||||
|
return spec is not None
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
invokeAI_mps_available = check_for_psutil()
|
||||||
|
|
||||||
|
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
|
||||||
|
if invokeAI_mps_available:
|
||||||
|
import psutil
|
||||||
|
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||||
|
|
||||||
|
def einsum_op_compvis(q, k, v):
|
||||||
|
s = einsum('b i d, b j d -> b i j', q, k)
|
||||||
|
s = s.softmax(dim=-1, dtype=s.dtype)
|
||||||
|
return einsum('b i j, b j d -> b i d', s, v)
|
||||||
|
|
||||||
|
def einsum_op_slice_0(q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[0], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_slice_1(q, k, v, slice_size):
|
||||||
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||||
|
for i in range(0, q.shape[1], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
|
||||||
|
return r
|
||||||
|
|
||||||
|
def einsum_op_mps_v1(q, k, v):
|
||||||
|
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
else:
|
||||||
|
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||||
|
if slice_size % 4096 == 0:
|
||||||
|
slice_size -= 1
|
||||||
|
return einsum_op_slice_1(q, k, v, slice_size)
|
||||||
|
|
||||||
|
def einsum_op_mps_v2(q, k, v):
|
||||||
|
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
else:
|
||||||
|
return einsum_op_slice_0(q, k, v, 1)
|
||||||
|
|
||||||
|
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
|
||||||
|
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||||
|
if size_mb <= max_tensor_mb:
|
||||||
|
return einsum_op_compvis(q, k, v)
|
||||||
|
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||||
|
if div <= q.shape[0]:
|
||||||
|
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
|
||||||
|
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
|
||||||
|
|
||||||
|
def einsum_op_cuda(q, k, v):
|
||||||
|
stats = torch.cuda.memory_stats(q.device)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
# Divide factor of safety as there's copying and fragmentation
|
||||||
|
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||||
|
|
||||||
|
def einsum_op(q, k, v):
|
||||||
|
if q.device.type == 'cuda':
|
||||||
|
return einsum_op_cuda(q, k, v)
|
||||||
|
|
||||||
|
if q.device.type == 'mps':
|
||||||
|
if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
|
||||||
|
return einsum_op_mps_v1(q, k, v)
|
||||||
|
return einsum_op_mps_v2(q, k, v)
|
||||||
|
|
||||||
|
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||||
|
# Tested on i7 with 8MB L3 cache.
|
||||||
|
return einsum_op_tensor_mem(q, k, v, 32)
|
||||||
|
|
||||||
|
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
|
||||||
|
q = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k = self.to_k(context_k) * self.scale
|
||||||
|
v = self.to_v(context_v)
|
||||||
|
del context, context_k, context_v, x
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||||
|
r = einsum_op(q, k, v)
|
||||||
|
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
|
||||||
|
|
||||||
|
# -- End of code from https://github.com/invoke-ai/InvokeAI --
|
||||||
|
|
||||||
|
def xformers_attention_forward(self, x, context=None, mask=None):
|
||||||
|
h = self.heads
|
||||||
|
q_in = self.to_q(x)
|
||||||
|
context = default(context, x)
|
||||||
|
|
||||||
|
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
|
||||||
|
k_in = self.to_k(context_k)
|
||||||
|
v_in = self.to_v(context_v)
|
||||||
|
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
|
||||||
|
del q_in, k_in, v_in
|
||||||
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||||
|
|
||||||
|
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||||||
|
return self.to_out(out)
|
||||||
|
|
||||||
|
def cross_attention_attnblock_forward(self, x):
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q1 = self.q(h_)
|
||||||
|
k1 = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
|
||||||
|
# compute attention
|
||||||
|
b, c, h, w = q1.shape
|
||||||
|
|
||||||
|
q2 = q1.reshape(b, c, h*w)
|
||||||
|
del q1
|
||||||
|
|
||||||
|
q = q2.permute(0, 2, 1) # b,hw,c
|
||||||
|
del q2
|
||||||
|
|
||||||
|
k = k1.reshape(b, c, h*w) # b,c,hw
|
||||||
|
del k1
|
||||||
|
|
||||||
|
h_ = torch.zeros_like(k, device=q.device)
|
||||||
|
|
||||||
|
stats = torch.cuda.memory_stats(q.device)
|
||||||
|
mem_active = stats['active_bytes.all.current']
|
||||||
|
mem_reserved = stats['reserved_bytes.all.current']
|
||||||
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
||||||
|
mem_free_torch = mem_reserved - mem_active
|
||||||
|
mem_free_total = mem_free_cuda + mem_free_torch
|
||||||
|
|
||||||
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||||
|
mem_required = tensor_size * 2.5
|
||||||
|
steps = 1
|
||||||
|
|
||||||
|
if mem_required > mem_free_total:
|
||||||
|
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||||
|
|
||||||
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||||
|
for i in range(0, q.shape[1], slice_size):
|
||||||
|
end = i + slice_size
|
||||||
|
|
||||||
|
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||||
|
w2 = w1 * (int(c)**(-0.5))
|
||||||
|
del w1
|
||||||
|
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
|
||||||
|
del w2
|
||||||
|
|
||||||
|
# attend to values
|
||||||
|
v1 = v.reshape(b, c, h*w)
|
||||||
|
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||||
|
del w3
|
||||||
|
|
||||||
|
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||||
|
del v1, w4
|
||||||
|
|
||||||
|
h2 = h_.reshape(b, c, h, w)
|
||||||
|
del h_
|
||||||
|
|
||||||
|
h3 = self.proj_out(h2)
|
||||||
|
del h2
|
||||||
|
|
||||||
|
h3 += x
|
||||||
|
|
||||||
|
return h3
|
||||||
|
|
||||||
|
def xformers_attnblock_forward(self, x):
|
||||||
|
try:
|
||||||
|
h_ = x
|
||||||
|
h_ = self.norm(h_)
|
||||||
|
q = self.q(h_)
|
||||||
|
k = self.k(h_)
|
||||||
|
v = self.v(h_)
|
||||||
|
b, c, h, w = q.shape
|
||||||
|
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
|
||||||
|
q = q.contiguous()
|
||||||
|
k = k.contiguous()
|
||||||
|
v = v.contiguous()
|
||||||
|
out = xformers.ops.memory_efficient_attention(q, k, v)
|
||||||
|
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
|
||||||
|
out = self.proj_out(out)
|
||||||
|
return x + out
|
||||||
|
except NotImplementedError:
|
||||||
|
return cross_attention_attnblock_forward(self, x)
|
30
modules/sd_hijack_unet.py
Normal file
30
modules/sd_hijack_unet.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class TorchHijackForUnet:
|
||||||
|
"""
|
||||||
|
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
|
||||||
|
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
if item == 'cat':
|
||||||
|
return self.cat
|
||||||
|
|
||||||
|
if hasattr(torch, item):
|
||||||
|
return getattr(torch, item)
|
||||||
|
|
||||||
|
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
||||||
|
|
||||||
|
def cat(self, tensors, *args, **kwargs):
|
||||||
|
if len(tensors) == 2:
|
||||||
|
a, b = tensors
|
||||||
|
if a.shape[-2:] != b.shape[-2:]:
|
||||||
|
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
|
||||||
|
|
||||||
|
tensors = (a, b)
|
||||||
|
|
||||||
|
return torch.cat(tensors, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
th = TorchHijackForUnet()
|
34
modules/sd_hijack_xlmr.py
Normal file
34
modules/sd_hijack_xlmr.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import open_clip.tokenizer
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from modules import sd_hijack_clip, devices
|
||||||
|
from modules.shared import opts
|
||||||
|
|
||||||
|
|
||||||
|
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
|
||||||
|
def __init__(self, wrapped, hijack):
|
||||||
|
super().__init__(wrapped, hijack)
|
||||||
|
|
||||||
|
self.id_start = wrapped.config.bos_token_id
|
||||||
|
self.id_end = wrapped.config.eos_token_id
|
||||||
|
self.id_pad = wrapped.config.pad_token_id
|
||||||
|
|
||||||
|
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
|
||||||
|
|
||||||
|
def encode_with_transformers(self, tokens):
|
||||||
|
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
|
||||||
|
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
|
||||||
|
# layer to work with - you have to use the last
|
||||||
|
|
||||||
|
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
|
||||||
|
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
|
||||||
|
z = features['projection_state']
|
||||||
|
|
||||||
|
return z
|
||||||
|
|
||||||
|
def encode_embedding_init_text(self, init_text, nvpt):
|
||||||
|
embedding_layer = self.wrapped.roberta.embeddings
|
||||||
|
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||||
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||||
|
|
||||||
|
return embedded
|
@ -1,57 +1,70 @@
|
|||||||
import glob
|
import collections
|
||||||
import os.path
|
import os.path
|
||||||
import sys
|
import sys
|
||||||
|
import gc
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
import torch
|
import torch
|
||||||
|
import re
|
||||||
|
import safetensors.torch
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
from os import mkdir
|
||||||
|
from urllib import request
|
||||||
|
import ldm.modules.midas as midas
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
from modules import shared, modelloader
|
from modules import shared, modelloader, devices, script_callbacks, sd_vae
|
||||||
from modules.paths import models_path
|
from modules.paths import models_path
|
||||||
|
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||||
|
|
||||||
model_dir = "Stable-diffusion"
|
model_dir = "Stable-diffusion"
|
||||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||||
model_name = "sd-v1-4.ckpt"
|
|
||||||
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
|
|
||||||
user_dir = None
|
|
||||||
|
|
||||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
|
||||||
checkpoints_list = {}
|
checkpoints_list = {}
|
||||||
|
checkpoints_loaded = collections.OrderedDict()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||||
|
|
||||||
from transformers import logging
|
from transformers import logging, CLIPModel
|
||||||
|
|
||||||
logging.set_verbosity_error()
|
logging.set_verbosity_error()
|
||||||
except Exception:
|
except Exception:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def setup_model(dirname):
|
def setup_model():
|
||||||
global user_dir
|
|
||||||
user_dir = dirname
|
|
||||||
if not os.path.exists(model_path):
|
if not os.path.exists(model_path):
|
||||||
os.makedirs(model_path)
|
os.makedirs(model_path)
|
||||||
checkpoints_list.clear()
|
|
||||||
list_models()
|
list_models()
|
||||||
|
enable_midas_autodownload()
|
||||||
|
|
||||||
|
|
||||||
def checkpoint_tiles():
|
def checkpoint_tiles():
|
||||||
return sorted([x.title for x in checkpoints_list.values()])
|
convert = lambda name: int(name) if name.isdigit() else name.lower()
|
||||||
|
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
||||||
|
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
|
||||||
|
|
||||||
|
|
||||||
|
def find_checkpoint_config(info):
|
||||||
|
config = os.path.splitext(info.filename)[0] + ".yaml"
|
||||||
|
if os.path.exists(config):
|
||||||
|
return config
|
||||||
|
|
||||||
|
return shared.cmd_opts.config
|
||||||
|
|
||||||
|
|
||||||
def list_models():
|
def list_models():
|
||||||
checkpoints_list.clear()
|
checkpoints_list.clear()
|
||||||
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=user_dir, ext_filter=[".ckpt"], download_name=model_name)
|
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
|
||||||
|
|
||||||
def modeltitle(path, shorthash):
|
def modeltitle(path, shorthash):
|
||||||
abspath = os.path.abspath(path)
|
abspath = os.path.abspath(path)
|
||||||
|
|
||||||
if user_dir is not None and abspath.startswith(user_dir):
|
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
|
||||||
name = abspath.replace(user_dir, '')
|
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
|
||||||
elif abspath.startswith(model_path):
|
elif abspath.startswith(model_path):
|
||||||
name = abspath.replace(model_path, '')
|
name = abspath.replace(model_path, '')
|
||||||
else:
|
else:
|
||||||
@ -69,12 +82,13 @@ def list_models():
|
|||||||
h = model_hash(cmd_ckpt)
|
h = model_hash(cmd_ckpt)
|
||||||
title, short_model_name = modeltitle(cmd_ckpt, h)
|
title, short_model_name = modeltitle(cmd_ckpt, h)
|
||||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
|
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
|
||||||
shared.opts.sd_model_checkpoint = title
|
shared.opts.data['sd_model_checkpoint'] = title
|
||||||
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
||||||
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
||||||
for filename in model_list:
|
for filename in model_list:
|
||||||
h = model_hash(filename)
|
h = model_hash(filename)
|
||||||
title, short_model_name = modeltitle(filename, h)
|
title, short_model_name = modeltitle(filename, h)
|
||||||
|
|
||||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
|
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
|
||||||
|
|
||||||
|
|
||||||
@ -100,15 +114,19 @@ def model_hash(filename):
|
|||||||
|
|
||||||
def select_checkpoint():
|
def select_checkpoint():
|
||||||
model_checkpoint = shared.opts.sd_model_checkpoint
|
model_checkpoint = shared.opts.sd_model_checkpoint
|
||||||
|
|
||||||
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
||||||
if checkpoint_info is not None:
|
if checkpoint_info is not None:
|
||||||
return checkpoint_info
|
return checkpoint_info
|
||||||
|
|
||||||
if len(checkpoints_list) == 0:
|
if len(checkpoints_list) == 0:
|
||||||
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
||||||
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
if shared.cmd_opts.ckpt is not None:
|
||||||
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
||||||
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
print(f" - directory {model_path}", file=sys.stderr)
|
||||||
|
if shared.cmd_opts.ckpt_dir is not None:
|
||||||
|
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
||||||
|
print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
||||||
exit(1)
|
exit(1)
|
||||||
|
|
||||||
checkpoint_info = next(iter(checkpoints_list.values()))
|
checkpoint_info = next(iter(checkpoints_list.values()))
|
||||||
@ -118,33 +136,189 @@ def select_checkpoint():
|
|||||||
return checkpoint_info
|
return checkpoint_info
|
||||||
|
|
||||||
|
|
||||||
def load_model_weights(model, checkpoint_file, sd_model_hash):
|
chckpoint_dict_replacements = {
|
||||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
|
||||||
|
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
|
||||||
|
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
|
||||||
|
}
|
||||||
|
|
||||||
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
|
||||||
if "global_step" in pl_sd:
|
def transform_checkpoint_dict_key(k):
|
||||||
|
for text, replacement in chckpoint_dict_replacements.items():
|
||||||
|
if k.startswith(text):
|
||||||
|
k = replacement + k[len(text):]
|
||||||
|
|
||||||
|
return k
|
||||||
|
|
||||||
|
|
||||||
|
def get_state_dict_from_checkpoint(pl_sd):
|
||||||
|
pl_sd = pl_sd.pop("state_dict", pl_sd)
|
||||||
|
pl_sd.pop("state_dict", None)
|
||||||
|
|
||||||
|
sd = {}
|
||||||
|
for k, v in pl_sd.items():
|
||||||
|
new_key = transform_checkpoint_dict_key(k)
|
||||||
|
|
||||||
|
if new_key is not None:
|
||||||
|
sd[new_key] = v
|
||||||
|
|
||||||
|
pl_sd.clear()
|
||||||
|
pl_sd.update(sd)
|
||||||
|
|
||||||
|
return pl_sd
|
||||||
|
|
||||||
|
|
||||||
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
||||||
|
_, extension = os.path.splitext(checkpoint_file)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
device = map_location or shared.weight_load_location
|
||||||
|
if device is None:
|
||||||
|
device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
|
||||||
|
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
|
||||||
|
else:
|
||||||
|
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
|
||||||
|
|
||||||
|
if print_global_state and "global_step" in pl_sd:
|
||||||
print(f"Global Step: {pl_sd['global_step']}")
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
sd = pl_sd["state_dict"]
|
|
||||||
|
|
||||||
model.load_state_dict(sd, strict=False)
|
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||||
|
return sd
|
||||||
|
|
||||||
if shared.cmd_opts.opt_channelslast:
|
|
||||||
model.to(memory_format=torch.channels_last)
|
|
||||||
|
|
||||||
if not shared.cmd_opts.no_half:
|
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
model.half()
|
checkpoint_file = checkpoint_info.filename
|
||||||
|
sd_model_hash = checkpoint_info.hash
|
||||||
|
|
||||||
|
cache_enabled = shared.opts.sd_checkpoint_cache > 0
|
||||||
|
|
||||||
|
if cache_enabled and checkpoint_info in checkpoints_loaded:
|
||||||
|
# use checkpoint cache
|
||||||
|
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||||
|
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||||
|
else:
|
||||||
|
# load from file
|
||||||
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||||
|
|
||||||
|
sd = read_state_dict(checkpoint_file)
|
||||||
|
model.load_state_dict(sd, strict=False)
|
||||||
|
del sd
|
||||||
|
|
||||||
|
if cache_enabled:
|
||||||
|
# cache newly loaded model
|
||||||
|
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||||
|
|
||||||
|
if shared.cmd_opts.opt_channelslast:
|
||||||
|
model.to(memory_format=torch.channels_last)
|
||||||
|
|
||||||
|
if not shared.cmd_opts.no_half:
|
||||||
|
vae = model.first_stage_model
|
||||||
|
|
||||||
|
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
|
||||||
|
if shared.cmd_opts.no_half_vae:
|
||||||
|
model.first_stage_model = None
|
||||||
|
|
||||||
|
model.half()
|
||||||
|
model.first_stage_model = vae
|
||||||
|
|
||||||
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||||
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||||
|
|
||||||
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
|
# clean up cache if limit is reached
|
||||||
|
if cache_enabled:
|
||||||
|
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
|
||||||
|
checkpoints_loaded.popitem(last=False) # LRU
|
||||||
|
|
||||||
model.sd_model_hash = sd_model_hash
|
model.sd_model_hash = sd_model_hash
|
||||||
model.sd_model_checkpint = checkpoint_file
|
model.sd_model_checkpoint = checkpoint_file
|
||||||
|
model.sd_checkpoint_info = checkpoint_info
|
||||||
|
|
||||||
|
model.logvar = model.logvar.to(devices.device) # fix for training
|
||||||
|
|
||||||
|
sd_vae.delete_base_vae()
|
||||||
|
sd_vae.clear_loaded_vae()
|
||||||
|
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||||
|
sd_vae.load_vae(model, vae_file)
|
||||||
|
|
||||||
|
|
||||||
def load_model():
|
def enable_midas_autodownload():
|
||||||
|
"""
|
||||||
|
Gives the ldm.modules.midas.api.load_model function automatic downloading.
|
||||||
|
|
||||||
|
When the 512-depth-ema model, and other future models like it, is loaded,
|
||||||
|
it calls midas.api.load_model to load the associated midas depth model.
|
||||||
|
This function applies a wrapper to download the model to the correct
|
||||||
|
location automatically.
|
||||||
|
"""
|
||||||
|
|
||||||
|
midas_path = os.path.join(models_path, 'midas')
|
||||||
|
|
||||||
|
# stable-diffusion-stability-ai hard-codes the midas model path to
|
||||||
|
# a location that differs from where other scripts using this model look.
|
||||||
|
# HACK: Overriding the path here.
|
||||||
|
for k, v in midas.api.ISL_PATHS.items():
|
||||||
|
file_name = os.path.basename(v)
|
||||||
|
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
|
||||||
|
|
||||||
|
midas_urls = {
|
||||||
|
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
|
||||||
|
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
|
||||||
|
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
|
||||||
|
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
|
||||||
|
}
|
||||||
|
|
||||||
|
midas.api.load_model_inner = midas.api.load_model
|
||||||
|
|
||||||
|
def load_model_wrapper(model_type):
|
||||||
|
path = midas.api.ISL_PATHS[model_type]
|
||||||
|
if not os.path.exists(path):
|
||||||
|
if not os.path.exists(midas_path):
|
||||||
|
mkdir(midas_path)
|
||||||
|
|
||||||
|
print(f"Downloading midas model weights for {model_type} to {path}")
|
||||||
|
request.urlretrieve(midas_urls[model_type], path)
|
||||||
|
print(f"{model_type} downloaded")
|
||||||
|
|
||||||
|
return midas.api.load_model_inner(model_type)
|
||||||
|
|
||||||
|
midas.api.load_model = load_model_wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(checkpoint_info=None):
|
||||||
from modules import lowvram, sd_hijack
|
from modules import lowvram, sd_hijack
|
||||||
checkpoint_info = select_checkpoint()
|
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||||
|
checkpoint_config = find_checkpoint_config(checkpoint_info)
|
||||||
|
|
||||||
|
if checkpoint_config != shared.cmd_opts.config:
|
||||||
|
print(f"Loading config from: {checkpoint_config}")
|
||||||
|
|
||||||
|
if shared.sd_model:
|
||||||
|
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
|
||||||
|
shared.sd_model = None
|
||||||
|
gc.collect()
|
||||||
|
devices.torch_gc()
|
||||||
|
|
||||||
|
sd_config = OmegaConf.load(checkpoint_config)
|
||||||
|
|
||||||
|
if should_hijack_inpainting(checkpoint_info):
|
||||||
|
# Hardcoded config for now...
|
||||||
|
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||||
|
sd_config.model.params.conditioning_key = "hybrid"
|
||||||
|
sd_config.model.params.unet_config.params.in_channels = 9
|
||||||
|
sd_config.model.params.finetune_keys = None
|
||||||
|
|
||||||
|
if not hasattr(sd_config.model.params, "use_ema"):
|
||||||
|
sd_config.model.params.use_ema = False
|
||||||
|
|
||||||
|
do_inpainting_hijack()
|
||||||
|
|
||||||
|
if shared.cmd_opts.no_half:
|
||||||
|
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||||
|
|
||||||
sd_config = OmegaConf.load(shared.cmd_opts.config)
|
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
|
||||||
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||||
@ -154,18 +328,36 @@ def load_model():
|
|||||||
sd_hijack.model_hijack.hijack(sd_model)
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
|
|
||||||
sd_model.eval()
|
sd_model.eval()
|
||||||
|
shared.sd_model = sd_model
|
||||||
|
|
||||||
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
|
||||||
|
|
||||||
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
|
print("Model loaded.")
|
||||||
|
|
||||||
print(f"Model loaded.")
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
|
||||||
|
|
||||||
def reload_model_weights(sd_model, info=None):
|
def reload_model_weights(sd_model=None, info=None):
|
||||||
from modules import lowvram, devices, sd_hijack
|
from modules import lowvram, devices, sd_hijack
|
||||||
checkpoint_info = info or select_checkpoint()
|
checkpoint_info = info or select_checkpoint()
|
||||||
|
|
||||||
if sd_model.sd_model_checkpint == checkpoint_info.filename:
|
if not sd_model:
|
||||||
|
sd_model = shared.sd_model
|
||||||
|
|
||||||
|
current_checkpoint_info = sd_model.sd_checkpoint_info
|
||||||
|
checkpoint_config = find_checkpoint_config(current_checkpoint_info)
|
||||||
|
|
||||||
|
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
||||||
|
del sd_model
|
||||||
|
checkpoints_loaded.clear()
|
||||||
|
load_model(checkpoint_info)
|
||||||
|
return shared.sd_model
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.send_everything_to_cpu()
|
lowvram.send_everything_to_cpu()
|
||||||
else:
|
else:
|
||||||
@ -173,12 +365,19 @@ def reload_model_weights(sd_model, info=None):
|
|||||||
|
|
||||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||||
|
|
||||||
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
try:
|
||||||
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
except Exception as e:
|
||||||
|
print("Failed to load checkpoint, restoring previous")
|
||||||
|
load_model_weights(sd_model, current_checkpoint_info)
|
||||||
|
raise
|
||||||
|
finally:
|
||||||
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
||||||
sd_hijack.model_hijack.hijack(sd_model)
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||||
|
sd_model.to(devices.device)
|
||||||
|
|
||||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
print("Weights loaded.")
|
||||||
sd_model.to(devices.device)
|
|
||||||
|
|
||||||
print(f"Weights loaded.")
|
|
||||||
return sd_model
|
return sd_model
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user