diff --git a/modules/sd_models.py b/modules/sd_models.py index b1afbaa7..91b3eb11 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -508,6 +508,11 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None): timer.record("scripts callbacks") + with devices.autocast(), torch.no_grad(): + sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""]) + + timer.record("calculate empty prompt") + print(f"Model loaded in {timer.summary()}.") return sd_model diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 59982fc9..638e0ac9 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -125,6 +125,16 @@ class CFGDenoiser(torch.nn.Module): x_in = x_in[:-batch_size] sigma_in = sigma_in[:-batch_size] + # TODO add infotext entry + if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: + empty = shared.sd_model.cond_stage_model_empty_prompt + num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] + + if num_repeats < 0: + tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1) + elif num_repeats > 0: + uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1) + if tensor.shape[1] == uncond.shape[1] or skip_uncond: if is_edit_model: cond_in = torch.cat([tensor, uncond, uncond]) diff --git a/modules/shared.py b/modules/shared.py index 3099d1d2..e1a743d6 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -423,6 +423,7 @@ options_templates.update(options_section(('optimizations', "Optimizations"), { "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), + "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"), })) options_templates.update(options_section(('compatibility', "Compatibility"), {