From 339b5315700a469f4a9f0d5afc08ca2aca60c579 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 27 May 2023 15:47:33 +0300 Subject: [PATCH] custom unet support --- modules/processing.py | 4 +- modules/script_callbacks.py | 20 ++++++++ modules/sd_hijack.py | 20 +++++--- modules/sd_models.py | 4 +- modules/sd_unet.py | 92 +++++++++++++++++++++++++++++++++++++ modules/shared.py | 1 + modules/shared_items.py | 11 +++++ webui.py | 4 ++ 8 files changed, 148 insertions(+), 8 deletions(-) create mode 100644 modules/sd_unet.py diff --git a/modules/processing.py b/modules/processing.py index 29a3743f..b75f2515 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -674,6 +674,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": sd_vae_approx.model() + sd_unet.apply_unet() + if state.job_count == -1: state.job_count = p.n_iter diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 40f388a5..d2728e12 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -111,6 +111,7 @@ callback_map = dict( callbacks_before_ui=[], callbacks_on_reload=[], callbacks_list_optimizers=[], + callbacks_list_unets=[], ) @@ -271,6 +272,18 @@ def list_optimizers_callback(): return res +def list_unets_callback(): + res = [] + + for c in callback_map['callbacks_list_unets']: + try: + c.callback(res) + except Exception: + report_exception(c, 'list_unets') + + return res + + def add_callback(callbacks, fun): stack = [x for x in inspect.stack() if x.filename != __file__] filename = stack[0].filename if len(stack) > 0 else 'unknown file' @@ -430,3 +443,10 @@ def on_list_optimizers(callback): to it.""" add_callback(callback_map['callbacks_list_optimizers'], callback) + + +def on_list_unets(callback): + """register a function to be called when UI is making a list of alternative options for unet. + The function will be called with one argument, a list, and shall add objects of type modules.sd_unet.SdUnetOption to it.""" + + add_callback(callback_map['callbacks_list_unets'], callback) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f93df0a6..487dfd60 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -3,7 +3,7 @@ from torch.nn.functional import silu from types import MethodType import modules.textual_inversion.textual_inversion -from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors +from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr @@ -43,7 +43,7 @@ def list_optimizers(): optimizers.extend(new_optimizers) -def apply_optimizations(): +def apply_optimizations(option=None): global current_optimizer undo_optimizations() @@ -60,7 +60,7 @@ def apply_optimizations(): current_optimizer.undo() current_optimizer = None - selection = shared.opts.cross_attention_optimization + selection = option or shared.opts.cross_attention_optimization if selection == "Automatic" and len(optimizers) > 0: matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0]) else: @@ -72,12 +72,13 @@ def apply_optimizations(): matching_optimizer = optimizers[0] if matching_optimizer is not None: - print(f"Applying optimization: {matching_optimizer.name}... ", end='') + print(f"Applying attention optimization: {matching_optimizer.name}... ", end='') matching_optimizer.apply() print("done.") current_optimizer = matching_optimizer return current_optimizer.name else: + print("Disabling attention optimization") return '' @@ -155,9 +156,9 @@ class StableDiffusionModelHijack: def __init__(self): self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) - def apply_optimizations(self): + def apply_optimizations(self, option=None): try: - self.optimization_method = apply_optimizations() + self.optimization_method = apply_optimizations(option) except Exception as e: errors.display(e, "applying cross attention optimization") undo_optimizations() @@ -194,6 +195,11 @@ class StableDiffusionModelHijack: self.layers = flatten(m) + if not hasattr(ldm.modules.diffusionmodules.openaimodel, 'copy_of_UNetModel_forward_for_webui'): + ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui = ldm.modules.diffusionmodules.openaimodel.UNetModel.forward + + ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_unet.UNetModel_forward + def undo_hijack(self, m): if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: m.cond_stage_model = m.cond_stage_model.wrapped @@ -215,6 +221,8 @@ class StableDiffusionModelHijack: self.layers = None self.clip = None + ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui + def apply_circular(self, enable): if self.circular_enabled == enable: return diff --git a/modules/sd_models.py b/modules/sd_models.py index 91b3eb11..835bc016 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,7 +14,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config +from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.timer import Timer import tomesd @@ -532,6 +532,8 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename: return + sd_unet.apply_unet("None") + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.send_everything_to_cpu() else: diff --git a/modules/sd_unet.py b/modules/sd_unet.py new file mode 100644 index 00000000..6d708ad2 --- /dev/null +++ b/modules/sd_unet.py @@ -0,0 +1,92 @@ +import torch.nn +import ldm.modules.diffusionmodules.openaimodel + +from modules import script_callbacks, shared, devices + +unet_options = [] +current_unet_option = None +current_unet = None + + +def list_unets(): + new_unets = script_callbacks.list_unets_callback() + + unet_options.clear() + unet_options.extend(new_unets) + + +def get_unet_option(option=None): + option = option or shared.opts.sd_unet + + if option == "None": + return None + + if option == "Automatic": + name = shared.sd_model.sd_checkpoint_info.model_name + + options = [x for x in unet_options if x.model_name == name] + + option = options[0].label if options else "None" + + return next(iter([x for x in unet_options if x.label == option]), None) + + +def apply_unet(option=None): + global current_unet_option + global current_unet + + new_option = get_unet_option(option) + if new_option == current_unet_option: + return + + if current_unet is not None: + print(f"Dectivating unet: {current_unet.option.label}") + current_unet.deactivate() + + current_unet_option = new_option + if current_unet_option is None: + current_unet = None + + if not (shared.cmd_opts.lowvram or shared.cmd_opts.medvram): + shared.sd_model.model.diffusion_model.to(devices.device) + + return + + shared.sd_model.model.diffusion_model.to(devices.cpu) + devices.torch_gc() + + current_unet = current_unet_option.create_unet() + current_unet.option = current_unet_option + print(f"Activating unet: {current_unet.option.label}") + current_unet.activate() + + +class SdUnetOption: + model_name = None + """name of related checkpoint - this option will be selected automatically for unet if the name of checkpoint matches this""" + + label = None + """name of the unet in UI""" + + def create_unet(self): + """returns SdUnet object to be used as a Unet instead of built-in unet when making pictures""" + raise NotImplementedError() + + +class SdUnet(torch.nn.Module): + def forward(self, x, timesteps, context, *args, **kwargs): + raise NotImplementedError() + + def activate(self): + pass + + def deactivate(self): + pass + + +def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs): + if current_unet is not None: + return current_unet.forward(x, timesteps, context, *args, **kwargs) + + return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs) + diff --git a/modules/shared.py b/modules/shared.py index 0897f937..a5e7824a 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -403,6 +403,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), + "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), diff --git a/modules/shared_items.py b/modules/shared_items.py index 2a8713c8..7f306a06 100644 --- a/modules/shared_items.py +++ b/modules/shared_items.py @@ -29,3 +29,14 @@ def cross_attention_optimizations(): return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"] +def sd_unet_items(): + import modules.sd_unet + + return ["Automatic"] + [x.label for x in modules.sd_unet.unet_options] + ["None"] + + +def refresh_unet_list(): + import modules.sd_unet + + modules.sd_unet.list_unets() + diff --git a/webui.py b/webui.py index f9210f41..1e3ff061 100644 --- a/webui.py +++ b/webui.py @@ -58,6 +58,7 @@ import modules.sd_hijack import modules.sd_hijack_optimizations import modules.sd_models import modules.sd_vae +import modules.sd_unet import modules.txt2img import modules.script_callbacks import modules.textual_inversion.textual_inversion @@ -291,6 +292,9 @@ def initialize_rest(*, reload_script_modules=False): modules.sd_hijack.list_optimizers() startup_timer.record("scripts list_optimizers") + modules.sd_unet.list_unets() + startup_timer.record("scripts list_unets") + def load_model(): """ Accesses shared.sd_model property to load model.