diff --git a/modules/processing.py b/modules/processing.py index 462660ce..04a06290 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -106,7 +106,7 @@ class StableDiffusionProcessing: """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -141,6 +141,7 @@ class StableDiffusionProcessing: self.denoising_strength: float = denoising_strength self.sampler_noise_scheduler_override = None self.ddim_discretize = ddim_discretize or opts.ddim_discretize + self.s_min_uncond = s_min_uncond or opts.s_min_uncond self.s_churn = s_churn or opts.s_churn self.s_tmin = s_tmin or opts.s_tmin self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option @@ -163,6 +164,7 @@ class StableDiffusionProcessing: self.all_seeds = None self.all_subseeds = None self.iteration = 0 + @property def sd_model(self): diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index a547d1b5..d42d5fcf 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -76,7 +76,7 @@ class CFGDenoiser(torch.nn.Module): return denoised - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): + def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException @@ -116,6 +116,14 @@ class CFGDenoiser(torch.nn.Module): tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond + if self.step % 2 and s_min_uncond > 0 and not is_edit_model: + # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it + sigma_threshold = s_min_uncond + if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ): + uncond = torch.zeros([0,0,uncond.shape[2]]) + x_in=x_in[:x_in.shape[0]//2] + sigma_in=sigma_in[:sigma_in.shape[0]//2] + if tensor.shape[1] == uncond.shape[1]: if not is_edit_model: cond_in = torch.cat([tensor, uncond]) @@ -144,7 +152,8 @@ class CFGDenoiser(torch.nn.Module): x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) + if uncond.shape[0]: + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) @@ -152,12 +161,15 @@ class CFGDenoiser(torch.nn.Module): devices.test_for_nans(x_out, "unet") if opts.live_preview_content == "Prompt": - sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) + sd_samplers_common.store_latent(x_out[0:x_out.shape[0]-uncond.shape[0]]) elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) if not is_edit_model: - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + if uncond.shape[0]: + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + else: + denoised = x_out else: denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) @@ -165,7 +177,6 @@ class CFGDenoiser(torch.nn.Module): denoised = self.init_latent * self.mask + self.nmask * denoised self.step += 1 - return denoised @@ -244,6 +255,7 @@ class KDiffusionSampler: self.model_wrap_cfg.step = 0 self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.eta = p.eta if p.eta is not None else opts.eta_ancestral + self.s_min_uncond = getattr(p, 's_min_uncond', 0.0) k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) @@ -326,6 +338,7 @@ class KDiffusionSampler: 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond } samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) @@ -359,7 +372,8 @@ class KDiffusionSampler: 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale + 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond }, disable=False, callback=self.callback_state, **extra_params_kwargs)) return samples diff --git a/modules/shared.py b/modules/shared.py index 26bd56eb..ec964e3f 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -430,6 +430,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + 's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 52ae1c6e..8e957c26 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -212,6 +212,7 @@ axis_options = [ AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]), AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]), AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)), + AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")), AxisOption("Sigma Churn", float, apply_field("s_churn")), AxisOption("Sigma min", float, apply_field("s_tmin")), AxisOption("Sigma max", float, apply_field("s_tmax")),