Merge branch 'master' into img2img-enhance

This commit is contained in:
space-nuko 2023-03-28 10:59:12 -04:00 committed by GitHub
commit 4414d36bf6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 389 additions and 139 deletions

View File

@ -13,9 +13,9 @@ A browser interface based on Gradio library for Stable Diffusion.
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a ((tuxedo)) - will pay more attention to tuxedo
- a man in a (tuxedo:1.21) - alternative syntax
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
@ -28,7 +28,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
@ -46,7 +46,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
@ -69,7 +69,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
@ -78,11 +78,11 @@ A browser interface based on Gradio library for Stable Diffusion.
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
@ -91,7 +91,6 @@ A browser interface based on Gradio library for Stable Diffusion.
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
-
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@ -101,7 +100,7 @@ Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.

View File

@ -2,20 +2,34 @@ import glob
import os
import re
import torch
from typing import Union
from modules import shared, devices, sd_models, errors
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
re_digits = re.compile(r"\d+")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key):
def match(match_list, regex):
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
@ -26,16 +40,33 @@ def convert_diffusers_name_to_compvis(key):
m = []
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
@ -101,15 +132,22 @@ def load_lora(name, filename):
sd = sd_models.read_state_dict(filename)
keys_failed_to_match = []
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_diffusers, weight in sd.items():
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
key, lora_key = fullkey.split(".", 1)
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1)
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match.append(key_diffusers)
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
if sd_module is None:
keys_failed_to_match[key_diffusers] = key
continue
lora_module = lora.modules.get(key, None)
@ -123,15 +161,21 @@ def load_lora(name, filename):
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.device, dtype=devices.dtype)
module.to(device=devices.cpu, dtype=devices.dtype)
if lora_key == "lora_up.weight":
lora_module.up = module
@ -177,29 +221,120 @@ def load_loras(names, multipliers=None):
loaded_loras.append(lora)
def lora_forward(module, input, res):
input = devices.cond_cast_unet(input)
if len(loaded_loras) == 0:
return res
def lora_calc_updown(lora, module, target):
with torch.no_grad():
up = module.up.weight.to(target.device, dtype=target.dtype)
down = module.down.weight.to(target.device, dtype=target.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
updown = up @ down
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return updown
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Loras to the weights of torch layer self.
If weights already have this particular set of loras applied, does nothing.
If not, restores orginal weights from backup and alters weights according to loras.
"""
lora_layer_name = getattr(self, 'lora_layer_name', None)
if lora_layer_name is None:
return
current_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lora_weights_backup = weights_backup
if current_names != wanted_names:
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None:
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
else:
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
if module is not None and hasattr(self, 'weight'):
self.weight += lora_calc_updown(lora, module, self.weight)
continue
return res
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(f'failed to calculate lora weights for layer {lora_layer_name}')
setattr(self, "lora_current_names", wanted_names)
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
setattr(self, "lora_current_names", ())
setattr(self, "lora_weights_backup", None)
def lora_Linear_forward(self, input):
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
lora_apply_weights(self)
return torch.nn.Linear_forward_before_lora(self, input)
def lora_Linear_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input):
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
lora_apply_weights(self)
return torch.nn.Conv2d_forward_before_lora(self, input)
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_forward(self, *args, **kwargs):
lora_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras():
@ -212,7 +347,7 @@ def list_available_loras():
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
for filename in sorted(candidates):
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue

View File

@ -9,7 +9,11 @@ from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
def before_ui():
@ -20,11 +24,27 @@ def before_ui():
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
torch.nn.Linear.forward = lora.lora_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
@ -33,6 +53,4 @@ script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
}))

View File

@ -12,7 +12,7 @@ function dimensionChange(e, is_width, is_height){
currentHeight = e.target.value*1.0
}
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block";
if(!inImg2img){
return;
@ -22,7 +22,7 @@ function dimensionChange(e, is_width, is_height){
var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){ // img2img
targetElement = gradioApp().querySelector('div[data-testid=image] img');
targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img');
} else if(tabIndex == 1){ //Sketch
targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img');
} else if(tabIndex == 2){ // Inpaint
@ -38,7 +38,7 @@ function dimensionChange(e, is_width, is_height){
if(!arPreviewRect){
arPreviewRect = document.createElement('div')
arPreviewRect.id = "imageARPreview";
gradioApp().getRootNode().appendChild(arPreviewRect)
gradioApp().appendChild(arPreviewRect)
}
@ -91,7 +91,9 @@ onUiUpdate(function(){
if(arPreviewRect){
arPreviewRect.style.display = 'none';
}
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
var tabImg2img = gradioApp().querySelector("#tab_img2img");
if (tabImg2img) {
var inImg2img = tabImg2img.style.display == "block";
if(inImg2img){
let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){
@ -110,4 +112,5 @@ onUiUpdate(function(){
}
})
}
}
});

View File

@ -21,8 +21,7 @@ titles = {
"\u{1f5d1}\ufe0f": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt",
"\u{1f4d2}": "Paste available values into the field",
"\u{1f3b4}": "Show extra networks",
"\u{1f3b4}": "Show/hide extra networks",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",

View File

@ -32,13 +32,7 @@ function negmod(n, m) {
function updateOnBackgroundChange() {
const modalImage = gradioApp().getElementById("modalImage")
if (modalImage && modalImage.offsetParent) {
let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
let currentButton = null
allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
let currentButton = selected_gallery_button();
if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src;
@ -50,22 +44,10 @@ function updateOnBackgroundChange() {
}
function modalImageSwitch(offset) {
var allgalleryButtons = gradioApp().querySelectorAll(".gradio-gallery .thumbnail-item")
var galleryButtons = []
allgalleryButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
galleryButtons.push(elem);
}
})
var galleryButtons = all_gallery_buttons();
if (galleryButtons.length > 1) {
var allcurrentButtons = gradioApp().querySelectorAll(".gradio-gallery .thumbnail-item.selected")
var currentButton = null
allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
var currentButton = selected_gallery_button();
var result = -1
galleryButtons.forEach(function(v, i) {

View File

@ -15,7 +15,7 @@ onUiUpdate(function(){
}
}
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] div[id$="_results"] img.h-full.w-full.overflow-hidden');
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] div[id$="_results"] .thumbnail-item > img');
if (galleryPreviews == null) return;

View File

@ -7,9 +7,31 @@ function set_theme(theme){
}
}
function all_gallery_buttons() {
var allGalleryButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnails > .thumbnail-item.thumbnail-small');
var visibleGalleryButtons = [];
allGalleryButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
visibleGalleryButtons.push(elem);
}
})
return visibleGalleryButtons;
}
function selected_gallery_button() {
var allCurrentButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnail-item.thumbnail-small.selected');
var visibleCurrentButton = null;
allCurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
visibleCurrentButton = elem;
}
})
return visibleCurrentButton;
}
function selected_gallery_index(){
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .thumbnails > .thumbnail-item')
var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .thumbnails > .thumbnail-item.selected')
var buttons = all_gallery_buttons();
var button = selected_gallery_button();
var result = -1
buttons.forEach(function(v, i){ if(v==button) { result = i } })
@ -18,14 +40,18 @@ function selected_gallery_index(){
}
function extract_image_from_gallery(gallery){
if(gallery.length == 1){
return [gallery[0]]
if (gallery.length == 0){
return [null];
}
if (gallery.length == 1){
return [gallery[0]];
}
index = selected_gallery_index()
if (index < 0 || index >= gallery.length){
return [null]
// Use the first image in the gallery as the default
index = 0;
}
return [gallery[index]];

View File

@ -3,6 +3,7 @@ import io
import time
import datetime
import uvicorn
import gradio as gr
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
@ -197,6 +198,9 @@ class Api:
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
@ -230,7 +234,7 @@ class Api:
script_idx = script_name_to_index(script_name, script_runner.scripts)
return script_runner.scripts[script_idx]
def init_script_args(self, request, selectable_scripts, selectable_idx, script_runner):
def init_default_script_args(self, script_runner):
#find max idx from the scripts in runner and generate a none array to init script_args
last_arg_index = 1
for script in script_runner.scripts:
@ -238,13 +242,24 @@ class Api:
last_arg_index = script.args_to
# None everywhere except position 0 to initialize script args
script_args = [None]*last_arg_index
script_args[0] = 0
# get default values
with gr.Blocks(): # will throw errors calling ui function without this
for script in script_runner.scripts:
if script.ui(script.is_img2img):
ui_default_values = []
for elem in script.ui(script.is_img2img):
ui_default_values.append(elem.value)
script_args[script.args_from:script.args_to] = ui_default_values
return script_args
def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
script_args = default_script_args.copy()
# position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
if selectable_scripts:
script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
script_args[0] = selectable_idx + 1
else:
# when [0] = 0 no selectable script to run
script_args[0] = 0
# Now check for always on scripts
if request.alwayson_scripts and (len(request.alwayson_scripts) > 0):
@ -265,6 +280,8 @@ class Api:
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
if not self.default_script_arg_txt2img:
self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
populate = txt2imgreq.copy(update={ # Override __init__ params
@ -280,7 +297,7 @@ class Api:
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(txt2imgreq, selectable_scripts, selectable_script_idx, script_runner)
script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)
@ -317,6 +334,8 @@ class Api:
if not script_runner.scripts:
script_runner.initialize_scripts(True)
ui.create_ui()
if not self.default_script_arg_img2img:
self.default_script_arg_img2img = self.init_default_script_args(script_runner)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
populate = img2imgreq.copy(update={ # Override __init__ params
@ -334,7 +353,7 @@ class Api:
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
args.pop('alwayson_scripts', None)
script_args = self.init_script_args(img2imgreq, selectable_scripts, selectable_script_idx, script_runner)
script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)
send_images = args.pop('send_images', True)
args.pop('save_images', None)

View File

@ -4,6 +4,7 @@ from modules.paths_internal import models_path, script_path, data_path, extensio
parser = argparse.ArgumentParser()
parser.add_argument("-f", action='store_true', help=argparse.SUPPRESS) # allows running as root; implemented outside of webui
parser.add_argument("--update-all-extensions", action='store_true', help="launch.py argument: download updates for all extensions when starting the program")
parser.add_argument("--skip-python-version-check", action='store_true', help="launch.py argument: do not check python version")
parser.add_argument("--skip-torch-cuda-test", action='store_true', help="launch.py argument: do not check if CUDA is able to work properly")

View File

@ -5,13 +5,14 @@ import traceback
import time
import git
from modules import paths, shared
from modules import shared
from modules.paths_internal import extensions_dir, extensions_builtin_dir
extensions = []
if not os.path.exists(paths.extensions_dir):
os.makedirs(paths.extensions_dir)
if not os.path.exists(extensions_dir):
os.makedirs(extensions_dir)
def active():
return [x for x in extensions if x.enabled]
@ -26,21 +27,29 @@ class Extension:
self.can_update = False
self.is_builtin = is_builtin
self.version = ''
self.remote = None
self.have_info_from_repo = False
def read_info_from_repo(self):
if self.have_info_from_repo:
return
self.have_info_from_repo = True
repo = None
try:
if os.path.exists(os.path.join(path, ".git")):
repo = git.Repo(path)
if os.path.exists(os.path.join(self.path, ".git")):
repo = git.Repo(self.path)
except Exception:
print(f"Error reading github repository info from {path}:", file=sys.stderr)
print(f"Error reading github repository info from {self.path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if repo is None or repo.bare:
self.remote = None
else:
try:
self.remote = next(repo.remote().urls, None)
self.status = 'unknown'
self.remote = next(repo.remote().urls, None)
head = repo.head.commit
ts = time.asctime(time.gmtime(repo.head.commit.committed_date))
self.version = f'{head.hexsha[:8]} ({ts})'
@ -85,11 +94,11 @@ class Extension:
def list_extensions():
extensions.clear()
if not os.path.isdir(paths.extensions_dir):
if not os.path.isdir(extensions_dir):
return
extension_paths = []
for dirname in [paths.extensions_dir, paths.extensions_builtin_dir]:
for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(dirname):
return
@ -98,7 +107,7 @@ def list_extensions():
if not os.path.isdir(path):
continue
extension_paths.append((extension_dirname, path, dirname == paths.extensions_builtin_dir))
extension_paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
for dirname, path, is_builtin in extension_paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)

View File

@ -261,9 +261,12 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
if scale > 1.0:
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
if len(upscalers) == 0:
upscaler = shared.sd_upscalers[0]
print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback")
else:
upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
if im.width != w or im.height != h:

View File

@ -553,3 +553,15 @@ def IOComponent_init(self, *args, **kwargs):
original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.blocks.BlockContext.__init__ = BlockContext_init

View File

@ -640,7 +640,7 @@ mem_mon.start()
def listfiles(dirname):
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)]

View File

@ -145,7 +145,6 @@ Requested path was: {f}
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():

View File

@ -63,6 +63,9 @@ def check_updates(id_task, disable_list):
try:
ext.check_updates()
except FileNotFoundError as e:
if 'FETCH_HEAD' not in str(e):
raise
except Exception:
print(f"Error checking updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
@ -87,6 +90,8 @@ def extension_table():
"""
for ext in extensions.extensions:
ext.read_info_from_repo()
remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
if ext.can_update:

View File

@ -2,8 +2,10 @@ import glob
import os.path
import urllib.parse
from pathlib import Path
from PIL import PngImagePlugin
from modules import shared
from modules.images import read_info_from_image
import gradio as gr
import json
import html
@ -252,10 +254,10 @@ def create_ui(container, button, tabname):
def toggle_visibility(is_visible):
is_visible = not is_visible
return is_visible, gr.update(visible=is_visible)
return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary"))
state_visible = gr.State(value=False)
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button])
def refresh():
res = []
@ -290,6 +292,7 @@ def setup_ui(ui, gallery):
img_info = images[index if index >= 0 else 0]
image = image_from_url_text(img_info)
geninfo, items = read_info_from_image(image)
is_allowed = False
for extra_page in ui.stored_extra_pages:
@ -299,6 +302,11 @@ def setup_ui(ui, gallery):
assert is_allowed, f'writing to {filename} is not allowed'
if geninfo:
pnginfo_data = PngImagePlugin.PngInfo()
pnginfo_data.add_text('parameters', geninfo)
image.save(filename, pnginfo=pnginfo_data)
else:
image.save(filename)
return [page.create_html(ui.tabname) for page in ui.stored_extra_pages]

View File

@ -54,14 +54,11 @@ class Script(scripts.Script):
return strength
progress = loop / (loops - 1)
match denoising_curve:
case "Aggressive":
if denoising_curve == "Aggressive":
strength = math.sin((progress) * math.pi * 0.5)
case "Lazy":
elif denoising_curve == "Lazy":
strength = 1 - math.cos((progress) * math.pi * 0.5)
case _:
else:
strength = progress
change = (final_denoising_strength - initial_denoising_strength) * strength

View File

@ -7,7 +7,7 @@
--block-background-fill: transparent;
}
.block.padded{
.block.padded:not(.gradio-accordion) {
padding: 0 !important;
}
@ -54,10 +54,6 @@ div.compact{
gap: 1em;
}
.gradio-dropdown ul.options{
z-index: 3000;
}
.gradio-dropdown label span:not(.has-info),
.gradio-textbox label span:not(.has-info),
.gradio-number label span:not(.has-info)
@ -65,11 +61,30 @@ div.compact{
margin-bottom: 0;
}
.gradio-dropdown ul.options{
z-index: 3000;
min-width: fit-content;
max-width: inherit;
white-space: nowrap;
}
.gradio-dropdown ul.options li.item {
padding: 0.05em 0;
}
.gradio-dropdown ul.options li.item.selected {
background-color: var(--neutral-100);
}
.dark .gradio-dropdown ul.options li.item.selected {
background-color: var(--neutral-900);
}
.gradio-dropdown div.wrap.wrap.wrap.wrap{
box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
}
.gradio-dropdown .wrap-inner.wrap-inner.wrap-inner{
.gradio-dropdown:not(.multiselect) .wrap-inner.wrap-inner.wrap-inner{
flex-wrap: unset;
}
@ -123,6 +138,18 @@ div.gradio-html.min{
border-radius: 0.5em;
}
.gradio-button.secondary-down{
background: var(--button-secondary-background-fill);
color: var(--button-secondary-text-color);
}
.gradio-button.secondary-down, .gradio-button.secondary-down:hover{
box-shadow: 1px 1px 1px rgba(0,0,0,0.25) inset, 0px 0px 3px rgba(0,0,0,0.15) inset;
}
.gradio-button.secondary-down:hover{
background: var(--button-secondary-background-fill-hover);
color: var(--button-secondary-text-color-hover);
}
.checkboxes-row{
margin-bottom: 0.5em;
margin-left: 0em;
@ -507,6 +534,17 @@ div.dimensions-tools{
background-color: rgba(0, 0, 0, 0.8);
}
#imageARPreview {
position: absolute;
top: 0px;
left: 0px;
border: 2px solid red;
background: rgba(255, 0, 0, 0.3);
z-index: 900;
pointer-events: none;
display: none;
}
/* context menu (ie for the generate button) */
#context-menu{

View File

@ -265,9 +265,6 @@ def webui():
inbrowser=cmd_opts.autolaunch,
prevent_thread_lock=True
)
for dep in shared.demo.dependencies:
dep['show_progress'] = False # disable gradio css animation on component update
# after initial launch, disable --autolaunch for subsequent restarts
cmd_opts.autolaunch = False