Remove BSRGAN from --use-cpu, add SwinIR
This commit is contained in:
parent
f53ca51638
commit
4c24347e45
@ -45,7 +45,7 @@ def enable_tf32():
|
||||
|
||||
errors.run(enable_tf32, "Enabling TF32")
|
||||
|
||||
device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = None
|
||||
device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
|
||||
dtype = torch.float16
|
||||
dtype_vae = torch.float16
|
||||
|
||||
|
@ -58,7 +58,7 @@ parser.add_argument("--opt-split-attention", action='store_true', help="force-en
|
||||
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
||||
@ -96,8 +96,8 @@ restricted_opts = [
|
||||
"outdir_save",
|
||||
]
|
||||
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
|
||||
|
||||
device = devices.device
|
||||
weight_load_location = None if cmd_opts.lowram else "cpu"
|
||||
|
@ -7,8 +7,8 @@ from PIL import Image
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
from tqdm import tqdm
|
||||
|
||||
from modules import modelloader
|
||||
from modules.shared import cmd_opts, opts, device
|
||||
from modules import modelloader, devices
|
||||
from modules.shared import cmd_opts, opts
|
||||
from modules.swinir_model_arch import SwinIR as net
|
||||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
@ -42,7 +42,7 @@ class UpscalerSwinIR(Upscaler):
|
||||
model = self.load_model(model_file)
|
||||
if model is None:
|
||||
return img
|
||||
model = model.to(device)
|
||||
model = model.to(devices.device_swinir)
|
||||
img = upscale(img, model)
|
||||
try:
|
||||
torch.cuda.empty_cache()
|
||||
@ -111,7 +111,7 @@ def upscale(
|
||||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(device)
|
||||
img = img.unsqueeze(0).to(devices.device_swinir)
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
_, _, h_old, w_old = img.size()
|
||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||
@ -139,8 +139,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
||||
stride = tile - tile_overlap
|
||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir)
|
||||
|
||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
|
Loading…
Reference in New Issue
Block a user