Merge branch 'disable_initialization'
This commit is contained in:
commit
50fb20cedc
@ -10,7 +10,7 @@ from modules.upscaler import Upscaler
|
||||
from modules.paths import script_path, models_path
|
||||
|
||||
|
||||
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list:
|
||||
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
|
||||
"""
|
||||
A one-and done loader to try finding the desired models in specified directories.
|
||||
|
||||
@ -45,6 +45,8 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
|
||||
full_path = file
|
||||
if os.path.isdir(full_path):
|
||||
continue
|
||||
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
|
||||
continue
|
||||
if len(ext_filter) != 0:
|
||||
model_name, extension = os.path.splitext(file)
|
||||
if extension not in ext_filter:
|
||||
|
95
modules/sd_disable_initialization.py
Normal file
95
modules/sd_disable_initialization.py
Normal file
@ -0,0 +1,95 @@
|
||||
import ldm.modules.encoders.modules
|
||||
import open_clip
|
||||
import torch
|
||||
import transformers.utils.hub
|
||||
|
||||
|
||||
class DisableInitialization:
|
||||
"""
|
||||
When an object of this class enters a `with` block, it starts:
|
||||
- preventing torch's layer initialization functions from working
|
||||
- changes CLIP and OpenCLIP to not download model weights
|
||||
- changes CLIP to not make requests to check if there is a new version of a file you already have
|
||||
|
||||
When it leaves the block, it reverts everything to how it was before.
|
||||
|
||||
Use it like this:
|
||||
```
|
||||
with DisableInitialization():
|
||||
do_things()
|
||||
```
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
def do_nothing(*args, **kwargs):
|
||||
pass
|
||||
|
||||
def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
|
||||
return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
|
||||
|
||||
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
||||
|
||||
def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
|
||||
args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
|
||||
return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
|
||||
|
||||
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
||||
|
||||
# this file is always 404, prevent making request
|
||||
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json':
|
||||
raise transformers.utils.hub.EntryNotFoundError
|
||||
|
||||
try:
|
||||
return original(url, *args, local_files_only=True, **kwargs)
|
||||
except Exception as e:
|
||||
return original(url, *args, local_files_only=False, **kwargs)
|
||||
|
||||
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
|
||||
|
||||
def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
|
||||
|
||||
def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
|
||||
return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
|
||||
|
||||
self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_
|
||||
self.init_no_grad_normal = torch.nn.init._no_grad_normal_
|
||||
self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_
|
||||
self.create_model_and_transforms = open_clip.create_model_and_transforms
|
||||
self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained
|
||||
self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None)
|
||||
self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None)
|
||||
self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None)
|
||||
self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None)
|
||||
|
||||
torch.nn.init.kaiming_uniform_ = do_nothing
|
||||
torch.nn.init._no_grad_normal_ = do_nothing
|
||||
torch.nn.init._no_grad_uniform_ = do_nothing
|
||||
open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained
|
||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained
|
||||
if self.transformers_modeling_utils_load_pretrained_model is not None:
|
||||
transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model
|
||||
if self.transformers_tokenization_utils_base_cached_file is not None:
|
||||
transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file
|
||||
if self.transformers_configuration_utils_cached_file is not None:
|
||||
transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file
|
||||
if self.transformers_utils_hub_get_from_cache is not None:
|
||||
transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform
|
||||
torch.nn.init._no_grad_normal_ = self.init_no_grad_normal
|
||||
torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_
|
||||
open_clip.create_model_and_transforms = self.create_model_and_transforms
|
||||
ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained
|
||||
if self.transformers_modeling_utils_load_pretrained_model is not None:
|
||||
transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model
|
||||
if self.transformers_tokenization_utils_base_cached_file is not None:
|
||||
transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file
|
||||
if self.transformers_configuration_utils_cached_file is not None:
|
||||
transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file
|
||||
if self.transformers_utils_hub_get_from_cache is not None:
|
||||
transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache
|
||||
|
@ -2,6 +2,7 @@ import collections
|
||||
import os.path
|
||||
import sys
|
||||
import gc
|
||||
import time
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
import re
|
||||
@ -13,7 +14,7 @@ import ldm.modules.midas as midas
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import shared, modelloader, devices, script_callbacks, sd_vae
|
||||
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors
|
||||
from modules.paths import models_path
|
||||
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||
|
||||
@ -61,7 +62,7 @@ def find_checkpoint_config(info):
|
||||
|
||||
def list_models():
|
||||
checkpoints_list.clear()
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
|
||||
|
||||
def modeltitle(path, shorthash):
|
||||
abspath = os.path.abspath(path)
|
||||
@ -288,6 +289,17 @@ def enable_midas_autodownload():
|
||||
midas.api.load_model = load_model_wrapper
|
||||
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
self.start = time.time()
|
||||
|
||||
def elapsed(self):
|
||||
end = time.time()
|
||||
res = end - self.start
|
||||
self.start = end
|
||||
return res
|
||||
|
||||
|
||||
def load_model(checkpoint_info=None):
|
||||
from modules import lowvram, sd_hijack
|
||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||
@ -319,10 +331,21 @@ def load_model(checkpoint_info=None):
|
||||
if shared.cmd_opts.no_half:
|
||||
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||
|
||||
timer = Timer()
|
||||
|
||||
try:
|
||||
with sd_disable_initialization.DisableInitialization():
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
except Exception as e:
|
||||
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
|
||||
elapsed_create = timer.elapsed()
|
||||
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
elapsed_load_weights = timer.elapsed()
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||
else:
|
||||
@ -337,7 +360,9 @@ def load_model(checkpoint_info=None):
|
||||
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
||||
print("Model loaded.")
|
||||
elapsed_the_rest = timer.elapsed()
|
||||
|
||||
print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).")
|
||||
|
||||
return sd_model
|
||||
|
||||
@ -370,6 +395,8 @@ def reload_model_weights(sd_model=None, info=None):
|
||||
|
||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||
|
||||
timer = Timer()
|
||||
|
||||
try:
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
except Exception as e:
|
||||
@ -383,6 +410,8 @@ def reload_model_weights(sd_model=None, info=None):
|
||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||
sd_model.to(devices.device)
|
||||
|
||||
print("Weights loaded.")
|
||||
elapsed = timer.elapsed()
|
||||
|
||||
print(f"Weights loaded in {elapsed:.1f}s.")
|
||||
|
||||
return sd_model
|
||||
|
Loading…
Reference in New Issue
Block a user