diff --git a/modules/img2img.py b/modules/img2img.py index 3129798d..2c74842d 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -1,4 +1,6 @@ import math +import cv2 +import numpy as np from PIL import Image from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images @@ -57,8 +59,19 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index state.job_count = n_iter + do_color_correction = False + try: + from skimage import exposure + do_color_correction = True + except: + print("Install scikit-image to perform color correction on loopback") + + for i in range(n_iter): + if do_color_correction and i == 0: + correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB) + p.n_iter = 1 p.batch_size = 1 p.do_not_save_grid = True @@ -69,8 +82,21 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index if initial_seed is None: initial_seed = processed.seed initial_info = processed.info + + init_img = processed.images[0] - p.init_images = [processed.images[0]] + if do_color_correction and correction_target is not None: + print("Colour correcting input...") + init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms( + cv2.cvtColor( + np.asarray(init_img), + cv2.COLOR_RGB2LAB + ), + correction_target, + channel_axis=2 + ), cv2.COLOR_LAB2RGB).astype("uint8")) + + p.init_images = [init_img] p.seed = processed.seed + 1 p.denoising_strength = max(p.denoising_strength * 0.95, 0.1) history.append(processed.images[0]) diff --git a/requirements.txt b/requirements.txt index c9e3f2fc..ba1bc281 100644 --- a/requirements.txt +++ b/requirements.txt @@ -10,5 +10,6 @@ omegaconf pytorch_lightning diffusers invisible-watermark +scikit-image git+https://github.com/crowsonkb/k-diffusion.git git+https://github.com/TencentARC/GFPGAN.git