From 550256db1ce18778a9d56ff343d844c61b9f9b83 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:19:16 +0300 Subject: [PATCH] ruff manual fixes --- .../LDSR/sd_hijack_autoencoder.py | 10 +++++----- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 14 +++++++------- extensions-builtin/SwinIR/swinir_model_arch.py | 6 +++++- .../SwinIR/swinir_model_arch_v2.py | 11 +++++++++-- modules/api/api.py | 18 ++++++++++++------ modules/codeformer/codeformer_arch.py | 7 +++++-- modules/codeformer/vqgan_arch.py | 4 ++-- modules/generation_parameters_copypaste.py | 4 ++-- modules/models/diffusion/ddpm_edit.py | 14 ++++++++------ modules/models/diffusion/uni_pc/uni_pc.py | 7 +++++-- modules/safe.py | 2 +- modules/sd_samplers_compvis.py | 2 +- modules/textual_inversion/image_embedding.py | 2 +- modules/textual_inversion/learn_schedule.py | 4 ++-- pyproject.toml | 5 ++++- 15 files changed, 69 insertions(+), 41 deletions(-) diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index f457ca93..8cc82d54 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -24,7 +24,7 @@ class VQModel(pl.LightningModule): n_embed, embed_dim, ckpt_path=None, - ignore_keys=[], + ignore_keys=None, image_key="image", colorize_nlabels=None, monitor=None, @@ -62,7 +62,7 @@ class VQModel(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or []) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @@ -81,11 +81,11 @@ class VQModel(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list()): + def init_from_ckpt(self, path, ignore_keys=None): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -270,7 +270,7 @@ class VQModel(pl.LightningModule): class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) + super().__init__(*args, embed_dim=embed_dim, **kwargs) self.embed_dim = embed_dim def encode(self, x): diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index d8fc30e3..f16d6504 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule): if monitor is not None: self.monitor = monitor if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) @@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -444,7 +444,7 @@ class LatentDiffusionV1(DDPMV1): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1418,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 863f42db..75f7bedc 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -644,13 +644,17 @@ class SwinIR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(SwinIR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 0e28ae6e..d4c0b0da 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -74,9 +74,12 @@ class WindowAttention(nn.Module): """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., - pretrained_window_size=[0, 0]): + pretrained_window_size=None): super().__init__() + + pretrained_window_size = pretrained_window_size or [0, 0] + self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size @@ -698,13 +701,17 @@ class Swin2SR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(Swin2SR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/modules/api/api.py b/modules/api/api.py index f52d371b..9efb558e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -34,14 +34,16 @@ import piexif.helper def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except Exception: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") + except Exception as e: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e + def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except Exception: - raise HTTPException(status_code=422, detail=f"Script '{name}' not found") + except Exception as e: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e + def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -50,20 +52,23 @@ def validate_sampler_name(name): return name + def setUpscalers(req: dict): reqDict = vars(req) reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) return reqDict + def decode_base64_to_image(encoding): if encoding.startswith("data:image/"): encoding = encoding.split(";")[1].split(",")[1] try: image = Image.open(BytesIO(base64.b64decode(encoding))) return image - except Exception: - raise HTTPException(status_code=500, detail="Invalid encoded image") + except Exception as e: + raise HTTPException(status_code=500, detail="Invalid encoded image") from e + def encode_pil_to_base64(image): with io.BytesIO() as output_bytes: @@ -94,6 +99,7 @@ def encode_pil_to_base64(image): return base64.b64encode(bytes_data) + def api_middleware(app: FastAPI): rich_available = True try: diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 00c407de..ff1c0b4b 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -161,10 +161,13 @@ class Fuse_sft_block(nn.Module): class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize','generator']): + connect_list=None, + fix_modules=None): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) + connect_list = connect_list or ['32', '64', '128', '256'] + fix_modules = fix_modules or ['quantize', 'generator'] + if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index 820e6b12..b24a0394 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -326,7 +326,7 @@ class Generator(nn.Module): @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() @@ -337,7 +337,7 @@ class VQAutoEncoder(nn.Module): self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size - self.attn_resolutions = attn_resolutions + self.attn_resolutions = attn_resolutions or [16] self.quantizer_type = quantizer self.encoder = Encoder( self.in_channels, diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index f1c59c46..7fbbe707 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -19,14 +19,14 @@ registered_param_bindings = [] class ParamBinding: - def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]): + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None): self.paste_button = paste_button self.tabname = tabname self.source_text_component = source_text_component self.source_image_component = source_image_component self.source_tabname = source_tabname self.override_settings_component = override_settings_component - self.paste_field_names = paste_field_names + self.paste_field_names = paste_field_names or [] def reset(): diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 09432117..af4dea15 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -52,7 +52,7 @@ class DDPM(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -107,7 +107,7 @@ class DDPM(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) # If initialing from EMA-only checkpoint, create EMA model after loading. if self.use_ema and not load_ema: @@ -194,7 +194,9 @@ class DDPM(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): + ignore_keys = ignore_keys or [] + sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] @@ -473,7 +475,7 @@ class LatentDiffusion(DDPM): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1433,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index a4c4ef4e..6f8ad631 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -178,13 +178,13 @@ def model_wrapper( model, noise_schedule, model_type="noise", - model_kwargs={}, + model_kwargs=None, guidance_type="uncond", #condition=None, #unconditional_condition=None, guidance_scale=1., classifier_fn=None, - classifier_kwargs={}, + classifier_kwargs=None, ): """Create a wrapper function for the noise prediction model. @@ -275,6 +275,9 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ + model_kwargs = model_kwargs or [] + classifier_kwargs = classifier_kwargs or [] + def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. diff --git a/modules/safe.py b/modules/safe.py index e6c2f2c0..2d5b972f 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -104,7 +104,7 @@ def check_pt(filename, extra_handler): def load(filename, *args, **kwargs): - return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs) + return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs) def load_with_extra(filename, extra_handler=None, *args, **kwargs): diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index 7427648f..b1ee3be7 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler: def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning) - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) + res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs) x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res) diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index ee0e850a..d85a4888 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -17,7 +17,7 @@ class EmbeddingEncoder(json.JSONEncoder): class EmbeddingDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): - json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) + json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs) def object_hook(self, d): if 'TORCHTENSOR' in d: diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index f63fc72f..fda58898 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -32,8 +32,8 @@ class LearnScheduleIterator: self.maxit += 1 return assert self.rates - except (ValueError, AssertionError): - raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') + except (ValueError, AssertionError) as e: + raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e def __iter__(self): diff --git a/pyproject.toml b/pyproject.toml index 2f65fd6c..346a0cde 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -24,6 +24,9 @@ ignore = [ ] - [tool.ruff.per-file-ignores] "webui.py" = ["E402"] # Module level import not at top of file + +[tool.ruff.flake8-bugbear] +# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`. +extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file