From 574c8e554a5371eca2cbf344764cb241c6ec4efc Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 11 Oct 2022 03:32:11 -0400 Subject: [PATCH] Add InvokeAI and lstein to credits, add back CUDA support --- README.md | 1 + modules/sd_hijack_optimizations.py | 13 +++++++++++++ 2 files changed, 14 insertions(+) diff --git a/README.md b/README.md index a10faa01..859a91b6 100644 --- a/README.md +++ b/README.md @@ -123,6 +123,7 @@ The documentation was moved from this README over to the project's [wiki](https: - LDSR - https://github.com/Hafiidz/latent-diffusion - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. +- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 2a4ac7e0..f006427f 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -173,7 +173,20 @@ def einsum_op_tensor_mem(q, k, v, max_tensor_mb): return einsum_op_slice_0(q, k, v, q.shape[0] // div) return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) +def einsum_op_cuda(q, k, v): + stats = torch.cuda.memory_stats(q.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + # Divide factor of safety as there's copying and fragmentation + return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) + def einsum_op(q, k, v): + if q.device.type == 'cuda': + return einsum_op_cuda(q, k, v) + if q.device.type == 'mps': if mem_total_gb >= 32: return einsum_op_mps_v1(q, k, v)