Fix loss_dict problem
This commit is contained in:
parent
205991df78
commit
598f7fcd84
@ -561,6 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
_loss_step = 0 #internal
|
_loss_step = 0 #internal
|
||||||
# size = len(ds.indexes)
|
# size = len(ds.indexes)
|
||||||
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||||
|
loss_logging = []
|
||||||
# losses = torch.zeros((size,))
|
# losses = torch.zeros((size,))
|
||||||
# previous_mean_losses = [0]
|
# previous_mean_losses = [0]
|
||||||
# previous_mean_loss = 0
|
# previous_mean_loss = 0
|
||||||
@ -601,6 +602,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
else:
|
else:
|
||||||
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||||
|
loss_logging.append(loss.item())
|
||||||
del x
|
del x
|
||||||
del c
|
del c
|
||||||
|
|
||||||
@ -644,7 +646,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
|
|||||||
if shared.opts.training_enable_tensorboard:
|
if shared.opts.training_enable_tensorboard:
|
||||||
epoch_num = hypernetwork.step // len(ds)
|
epoch_num = hypernetwork.step // len(ds)
|
||||||
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
|
||||||
mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values())
|
mean_loss = sum(loss_logging) / len(loss_logging)
|
||||||
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
|
||||||
|
|
||||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||||
|
Loading…
Reference in New Issue
Block a user