split oversize extras.py to postprocessing.py
This commit is contained in:
parent
c56b367122
commit
68303c96e5
@ -1,231 +1,16 @@
|
|||||||
from __future__ import annotations
|
|
||||||
import math
|
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
import shutil
|
import shutil
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
from typing import Callable, List, OrderedDict, Tuple
|
from modules import shared, images, sd_models, sd_vae
|
||||||
from functools import partial
|
|
||||||
from dataclasses import dataclass
|
|
||||||
|
|
||||||
from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
|
|
||||||
from modules.shared import opts
|
|
||||||
import modules.gfpgan_model
|
|
||||||
from modules.ui import plaintext_to_html
|
from modules.ui import plaintext_to_html
|
||||||
import modules.codeformer_model
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import safetensors.torch
|
import safetensors.torch
|
||||||
|
|
||||||
class LruCache(OrderedDict):
|
|
||||||
@dataclass(frozen=True)
|
|
||||||
class Key:
|
|
||||||
image_hash: int
|
|
||||||
info_hash: int
|
|
||||||
args_hash: int
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Value:
|
|
||||||
image: Image.Image
|
|
||||||
info: str
|
|
||||||
|
|
||||||
def __init__(self, max_size: int = 5, *args, **kwargs):
|
|
||||||
super().__init__(*args, **kwargs)
|
|
||||||
self._max_size = max_size
|
|
||||||
|
|
||||||
def get(self, key: LruCache.Key) -> LruCache.Value:
|
|
||||||
ret = super().get(key)
|
|
||||||
if ret is not None:
|
|
||||||
self.move_to_end(key) # Move to end of eviction list
|
|
||||||
return ret
|
|
||||||
|
|
||||||
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
|
|
||||||
self[key] = value
|
|
||||||
while len(self) > self._max_size:
|
|
||||||
self.popitem(last=False)
|
|
||||||
|
|
||||||
|
|
||||||
cached_images: LruCache = LruCache(max_size=5)
|
|
||||||
|
|
||||||
|
|
||||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
|
||||||
devices.torch_gc()
|
|
||||||
|
|
||||||
shared.state.begin()
|
|
||||||
shared.state.job = 'extras'
|
|
||||||
|
|
||||||
imageArr = []
|
|
||||||
# Also keep track of original file names
|
|
||||||
imageNameArr = []
|
|
||||||
outputs = []
|
|
||||||
|
|
||||||
if extras_mode == 1:
|
|
||||||
#convert file to pillow image
|
|
||||||
for img in image_folder:
|
|
||||||
image = Image.open(img)
|
|
||||||
imageArr.append(image)
|
|
||||||
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
|
||||||
elif extras_mode == 2:
|
|
||||||
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
|
|
||||||
|
|
||||||
if input_dir == '':
|
|
||||||
return outputs, "Please select an input directory.", ''
|
|
||||||
image_list = shared.listfiles(input_dir)
|
|
||||||
for img in image_list:
|
|
||||||
try:
|
|
||||||
image = Image.open(img)
|
|
||||||
except Exception:
|
|
||||||
continue
|
|
||||||
imageArr.append(image)
|
|
||||||
imageNameArr.append(img)
|
|
||||||
else:
|
|
||||||
imageArr.append(image)
|
|
||||||
imageNameArr.append(None)
|
|
||||||
|
|
||||||
if extras_mode == 2 and output_dir != '':
|
|
||||||
outpath = output_dir
|
|
||||||
else:
|
|
||||||
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
|
||||||
|
|
||||||
# Extra operation definitions
|
|
||||||
|
|
||||||
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
|
||||||
shared.state.job = 'extras-gfpgan'
|
|
||||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if gfpgan_visibility < 1.0:
|
|
||||||
res = Image.blend(image, res, gfpgan_visibility)
|
|
||||||
|
|
||||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
|
||||||
return (res, info)
|
|
||||||
|
|
||||||
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
|
||||||
shared.state.job = 'extras-codeformer'
|
|
||||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if codeformer_visibility < 1.0:
|
|
||||||
res = Image.blend(image, res, codeformer_visibility)
|
|
||||||
|
|
||||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
|
||||||
return (res, info)
|
|
||||||
|
|
||||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
|
||||||
shared.state.job = 'extras-upscale'
|
|
||||||
upscaler = shared.sd_upscalers[scaler_index]
|
|
||||||
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
|
||||||
if mode == 1 and crop:
|
|
||||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
|
||||||
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
|
|
||||||
res = cropped
|
|
||||||
return res
|
|
||||||
|
|
||||||
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
|
||||||
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
|
|
||||||
nonlocal upscaling_resize
|
|
||||||
if resize_mode == 1:
|
|
||||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
|
||||||
crop_info = " (crop)" if upscaling_crop else ""
|
|
||||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
|
||||||
return (image, info)
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class UpscaleParams:
|
|
||||||
upscaler_idx: int
|
|
||||||
blend_alpha: float
|
|
||||||
|
|
||||||
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
|
||||||
blended_result: Image.Image = None
|
|
||||||
image_hash: str = hash(np.array(image.getdata()).tobytes())
|
|
||||||
for upscaler in params:
|
|
||||||
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
|
|
||||||
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
|
||||||
cache_key = LruCache.Key(image_hash=image_hash,
|
|
||||||
info_hash=hash(info),
|
|
||||||
args_hash=hash(upscale_args))
|
|
||||||
cached_entry = cached_images.get(cache_key)
|
|
||||||
if cached_entry is None:
|
|
||||||
res = upscale(image, *upscale_args)
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
|
|
||||||
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
|
|
||||||
else:
|
|
||||||
res, info = cached_entry.image, cached_entry.info
|
|
||||||
|
|
||||||
if blended_result is None:
|
|
||||||
blended_result = res
|
|
||||||
else:
|
|
||||||
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
|
|
||||||
return (blended_result, info)
|
|
||||||
|
|
||||||
# Build a list of operations to run
|
|
||||||
facefix_ops: List[Callable] = []
|
|
||||||
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
|
|
||||||
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
|
|
||||||
|
|
||||||
upscale_ops: List[Callable] = []
|
|
||||||
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
|
|
||||||
|
|
||||||
if upscaling_resize != 0:
|
|
||||||
step_params: List[UpscaleParams] = []
|
|
||||||
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
|
|
||||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
|
||||||
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
|
|
||||||
|
|
||||||
upscale_ops.append(partial(run_upscalers_blend, step_params))
|
|
||||||
|
|
||||||
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
|
|
||||||
|
|
||||||
for image, image_name in zip(imageArr, imageNameArr):
|
|
||||||
if image is None:
|
|
||||||
return outputs, "Please select an input image.", ''
|
|
||||||
|
|
||||||
shared.state.textinfo = f'Processing image {image_name}'
|
|
||||||
|
|
||||||
existing_pnginfo = image.info or {}
|
|
||||||
|
|
||||||
image = image.convert("RGB")
|
|
||||||
info = ""
|
|
||||||
# Run each operation on each image
|
|
||||||
for op in extras_ops:
|
|
||||||
image, info = op(image, info)
|
|
||||||
|
|
||||||
if opts.use_original_name_batch and image_name is not None:
|
|
||||||
basename = os.path.splitext(os.path.basename(image_name))[0]
|
|
||||||
else:
|
|
||||||
basename = ''
|
|
||||||
|
|
||||||
if opts.enable_pnginfo: # append info before save
|
|
||||||
image.info = existing_pnginfo
|
|
||||||
image.info["extras"] = info
|
|
||||||
|
|
||||||
if save_output:
|
|
||||||
# Add upscaler name as a suffix.
|
|
||||||
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
|
||||||
# Add second upscaler if applicable.
|
|
||||||
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
|
|
||||||
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
|
|
||||||
|
|
||||||
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
|
||||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
|
||||||
|
|
||||||
if extras_mode != 2 or show_extras_results :
|
|
||||||
outputs.append(image)
|
|
||||||
|
|
||||||
devices.torch_gc()
|
|
||||||
|
|
||||||
return outputs, plaintext_to_html(info), ''
|
|
||||||
|
|
||||||
def clear_cache():
|
|
||||||
cached_images.clear()
|
|
||||||
|
|
||||||
|
|
||||||
def run_pnginfo(image):
|
def run_pnginfo(image):
|
||||||
if image is None:
|
if image is None:
|
||||||
|
@ -1,28 +1,18 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
import math
|
|
||||||
import os
|
import os
|
||||||
import re
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
import shutil
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
import torch
|
|
||||||
import tqdm
|
|
||||||
|
|
||||||
from typing import Callable, List, OrderedDict, Tuple
|
from typing import Callable, List, OrderedDict, Tuple
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
|
||||||
from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
|
from modules import shared, images, devices, ui_components
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
import modules.gfpgan_model
|
import modules.gfpgan_model
|
||||||
from modules.ui import plaintext_to_html
|
|
||||||
import modules.codeformer_model
|
import modules.codeformer_model
|
||||||
import gradio as gr
|
|
||||||
import safetensors.torch
|
|
||||||
|
|
||||||
class LruCache(OrderedDict):
|
class LruCache(OrderedDict):
|
||||||
@dataclass(frozen=True)
|
@dataclass(frozen=True)
|
||||||
@ -55,7 +45,7 @@ class LruCache(OrderedDict):
|
|||||||
cached_images: LruCache = LruCache(max_size=5)
|
cached_images: LruCache = LruCache(max_size=5)
|
||||||
|
|
||||||
|
|
||||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
def run_postprocessing(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
shared.state.begin()
|
shared.state.begin()
|
||||||
@ -221,246 +211,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
return outputs, plaintext_to_html(info), ''
|
return outputs, ui_components.plaintext_to_html(info), ''
|
||||||
|
|
||||||
|
|
||||||
def clear_cache():
|
def clear_cache():
|
||||||
cached_images.clear()
|
cached_images.clear()
|
||||||
|
|
||||||
|
|
||||||
def run_pnginfo(image):
|
|
||||||
if image is None:
|
|
||||||
return '', '', ''
|
|
||||||
|
|
||||||
geninfo, items = images.read_info_from_image(image)
|
|
||||||
items = {**{'parameters': geninfo}, **items}
|
|
||||||
|
|
||||||
info = ''
|
|
||||||
for key, text in items.items():
|
|
||||||
info += f"""
|
|
||||||
<div>
|
|
||||||
<p><b>{plaintext_to_html(str(key))}</b></p>
|
|
||||||
<p>{plaintext_to_html(str(text))}</p>
|
|
||||||
</div>
|
|
||||||
""".strip()+"\n"
|
|
||||||
|
|
||||||
if len(info) == 0:
|
|
||||||
message = "Nothing found in the image."
|
|
||||||
info = f"<div><p>{message}<p></div>"
|
|
||||||
|
|
||||||
return '', geninfo, info
|
|
||||||
|
|
||||||
|
|
||||||
def create_config(ckpt_result, config_source, a, b, c):
|
|
||||||
def config(x):
|
|
||||||
res = sd_models.find_checkpoint_config(x) if x else None
|
|
||||||
return res if res != shared.sd_default_config else None
|
|
||||||
|
|
||||||
if config_source == 0:
|
|
||||||
cfg = config(a) or config(b) or config(c)
|
|
||||||
elif config_source == 1:
|
|
||||||
cfg = config(b)
|
|
||||||
elif config_source == 2:
|
|
||||||
cfg = config(c)
|
|
||||||
else:
|
|
||||||
cfg = None
|
|
||||||
|
|
||||||
if cfg is None:
|
|
||||||
return
|
|
||||||
|
|
||||||
filename, _ = os.path.splitext(ckpt_result)
|
|
||||||
checkpoint_filename = filename + ".yaml"
|
|
||||||
|
|
||||||
print("Copying config:")
|
|
||||||
print(" from:", cfg)
|
|
||||||
print(" to:", checkpoint_filename)
|
|
||||||
shutil.copyfile(cfg, checkpoint_filename)
|
|
||||||
|
|
||||||
|
|
||||||
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
|
|
||||||
|
|
||||||
|
|
||||||
def to_half(tensor, enable):
|
|
||||||
if enable and tensor.dtype == torch.float:
|
|
||||||
return tensor.half()
|
|
||||||
|
|
||||||
return tensor
|
|
||||||
|
|
||||||
|
|
||||||
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
|
|
||||||
shared.state.begin()
|
|
||||||
shared.state.job = 'model-merge'
|
|
||||||
|
|
||||||
def fail(message):
|
|
||||||
shared.state.textinfo = message
|
|
||||||
shared.state.end()
|
|
||||||
return [*[gr.update() for _ in range(4)], message]
|
|
||||||
|
|
||||||
def weighted_sum(theta0, theta1, alpha):
|
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
|
||||||
|
|
||||||
def get_difference(theta1, theta2):
|
|
||||||
return theta1 - theta2
|
|
||||||
|
|
||||||
def add_difference(theta0, theta1_2_diff, alpha):
|
|
||||||
return theta0 + (alpha * theta1_2_diff)
|
|
||||||
|
|
||||||
def filename_weighted_sum():
|
|
||||||
a = primary_model_info.model_name
|
|
||||||
b = secondary_model_info.model_name
|
|
||||||
Ma = round(1 - multiplier, 2)
|
|
||||||
Mb = round(multiplier, 2)
|
|
||||||
|
|
||||||
return f"{Ma}({a}) + {Mb}({b})"
|
|
||||||
|
|
||||||
def filename_add_difference():
|
|
||||||
a = primary_model_info.model_name
|
|
||||||
b = secondary_model_info.model_name
|
|
||||||
c = tertiary_model_info.model_name
|
|
||||||
M = round(multiplier, 2)
|
|
||||||
|
|
||||||
return f"{a} + {M}({b} - {c})"
|
|
||||||
|
|
||||||
def filename_nothing():
|
|
||||||
return primary_model_info.model_name
|
|
||||||
|
|
||||||
theta_funcs = {
|
|
||||||
"Weighted sum": (filename_weighted_sum, None, weighted_sum),
|
|
||||||
"Add difference": (filename_add_difference, get_difference, add_difference),
|
|
||||||
"No interpolation": (filename_nothing, None, None),
|
|
||||||
}
|
|
||||||
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
|
|
||||||
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
|
|
||||||
|
|
||||||
if not primary_model_name:
|
|
||||||
return fail("Failed: Merging requires a primary model.")
|
|
||||||
|
|
||||||
primary_model_info = sd_models.checkpoints_list[primary_model_name]
|
|
||||||
|
|
||||||
if theta_func2 and not secondary_model_name:
|
|
||||||
return fail("Failed: Merging requires a secondary model.")
|
|
||||||
|
|
||||||
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
|
|
||||||
|
|
||||||
if theta_func1 and not tertiary_model_name:
|
|
||||||
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
|
|
||||||
|
|
||||||
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
|
|
||||||
|
|
||||||
result_is_inpainting_model = False
|
|
||||||
|
|
||||||
if theta_func2:
|
|
||||||
shared.state.textinfo = f"Loading B"
|
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
|
||||||
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
|
||||||
else:
|
|
||||||
theta_1 = None
|
|
||||||
|
|
||||||
if theta_func1:
|
|
||||||
shared.state.textinfo = f"Loading C"
|
|
||||||
print(f"Loading {tertiary_model_info.filename}...")
|
|
||||||
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
|
|
||||||
|
|
||||||
shared.state.textinfo = 'Merging B and C'
|
|
||||||
shared.state.sampling_steps = len(theta_1.keys())
|
|
||||||
for key in tqdm.tqdm(theta_1.keys()):
|
|
||||||
if key in checkpoint_dict_skip_on_merge:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if 'model' in key:
|
|
||||||
if key in theta_2:
|
|
||||||
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
|
|
||||||
theta_1[key] = theta_func1(theta_1[key], t2)
|
|
||||||
else:
|
|
||||||
theta_1[key] = torch.zeros_like(theta_1[key])
|
|
||||||
|
|
||||||
shared.state.sampling_step += 1
|
|
||||||
del theta_2
|
|
||||||
|
|
||||||
shared.state.nextjob()
|
|
||||||
|
|
||||||
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
|
|
||||||
print(f"Loading {primary_model_info.filename}...")
|
|
||||||
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
|
||||||
|
|
||||||
print("Merging...")
|
|
||||||
shared.state.textinfo = 'Merging A and B'
|
|
||||||
shared.state.sampling_steps = len(theta_0.keys())
|
|
||||||
for key in tqdm.tqdm(theta_0.keys()):
|
|
||||||
if theta_1 and 'model' in key and key in theta_1:
|
|
||||||
|
|
||||||
if key in checkpoint_dict_skip_on_merge:
|
|
||||||
continue
|
|
||||||
|
|
||||||
a = theta_0[key]
|
|
||||||
b = theta_1[key]
|
|
||||||
|
|
||||||
# this enables merging an inpainting model (A) with another one (B);
|
|
||||||
# where normal model would have 4 channels, for latenst space, inpainting model would
|
|
||||||
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
|
|
||||||
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
|
|
||||||
if a.shape[1] == 4 and b.shape[1] == 9:
|
|
||||||
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
|
|
||||||
|
|
||||||
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
|
|
||||||
|
|
||||||
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
|
|
||||||
result_is_inpainting_model = True
|
|
||||||
else:
|
|
||||||
theta_0[key] = theta_func2(a, b, multiplier)
|
|
||||||
|
|
||||||
theta_0[key] = to_half(theta_0[key], save_as_half)
|
|
||||||
|
|
||||||
shared.state.sampling_step += 1
|
|
||||||
|
|
||||||
del theta_1
|
|
||||||
|
|
||||||
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
|
|
||||||
if bake_in_vae_filename is not None:
|
|
||||||
print(f"Baking in VAE from {bake_in_vae_filename}")
|
|
||||||
shared.state.textinfo = 'Baking in VAE'
|
|
||||||
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
|
|
||||||
|
|
||||||
for key in vae_dict.keys():
|
|
||||||
theta_0_key = 'first_stage_model.' + key
|
|
||||||
if theta_0_key in theta_0:
|
|
||||||
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
|
|
||||||
|
|
||||||
del vae_dict
|
|
||||||
|
|
||||||
if save_as_half and not theta_func2:
|
|
||||||
for key in theta_0.keys():
|
|
||||||
theta_0[key] = to_half(theta_0[key], save_as_half)
|
|
||||||
|
|
||||||
if discard_weights:
|
|
||||||
regex = re.compile(discard_weights)
|
|
||||||
for key in list(theta_0):
|
|
||||||
if re.search(regex, key):
|
|
||||||
theta_0.pop(key, None)
|
|
||||||
|
|
||||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
|
||||||
|
|
||||||
filename = filename_generator() if custom_name == '' else custom_name
|
|
||||||
filename += ".inpainting" if result_is_inpainting_model else ""
|
|
||||||
filename += "." + checkpoint_format
|
|
||||||
|
|
||||||
output_modelname = os.path.join(ckpt_dir, filename)
|
|
||||||
|
|
||||||
shared.state.nextjob()
|
|
||||||
shared.state.textinfo = "Saving"
|
|
||||||
print(f"Saving to {output_modelname}...")
|
|
||||||
|
|
||||||
_, extension = os.path.splitext(output_modelname)
|
|
||||||
if extension.lower() == ".safetensors":
|
|
||||||
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
|
|
||||||
else:
|
|
||||||
torch.save(theta_0, output_modelname)
|
|
||||||
|
|
||||||
sd_models.list_models()
|
|
||||||
|
|
||||||
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
|
|
||||||
|
|
||||||
print(f"Checkpoint saved to {output_modelname}.")
|
|
||||||
shared.state.textinfo = "Checkpoint saved"
|
|
||||||
shared.state.end()
|
|
||||||
|
|
||||||
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]
|
|
||||||
|
@ -20,7 +20,7 @@ import numpy as np
|
|||||||
from PIL import Image, PngImagePlugin
|
from PIL import Image, PngImagePlugin
|
||||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
||||||
|
|
||||||
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks
|
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components
|
||||||
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
|
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
|
||||||
from modules.paths import script_path
|
from modules.paths import script_path
|
||||||
|
|
||||||
@ -95,8 +95,8 @@ extra_networks_symbol = '\U0001F3B4' # 🎴
|
|||||||
|
|
||||||
|
|
||||||
def plaintext_to_html(text):
|
def plaintext_to_html(text):
|
||||||
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
|
return ui_components.plaintext_to_html(text)
|
||||||
return text
|
|
||||||
|
|
||||||
def send_gradio_gallery_to_image(x):
|
def send_gradio_gallery_to_image(x):
|
||||||
if len(x) == 0:
|
if len(x) == 0:
|
||||||
@ -1152,7 +1152,7 @@ def create_ui():
|
|||||||
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
|
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
|
||||||
|
|
||||||
submit.click(
|
submit.click(
|
||||||
fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
|
fn=wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
|
||||||
_js="get_extras_tab_index",
|
_js="get_extras_tab_index",
|
||||||
inputs=[
|
inputs=[
|
||||||
dummy_component,
|
dummy_component,
|
||||||
@ -1183,7 +1183,7 @@ def create_ui():
|
|||||||
parameters_copypaste.add_paste_fields("extras", extras_image, None)
|
parameters_copypaste.add_paste_fields("extras", extras_image, None)
|
||||||
|
|
||||||
extras_image.change(
|
extras_image.change(
|
||||||
fn=modules.extras.clear_cache,
|
fn=postprocessing.clear_cache,
|
||||||
inputs=[], outputs=[]
|
inputs=[], outputs=[]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,3 +1,5 @@
|
|||||||
|
import html
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
|
||||||
@ -47,3 +49,8 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
|
|||||||
|
|
||||||
def get_block_name(self):
|
def get_block_name(self):
|
||||||
return "colorpicker"
|
return "colorpicker"
|
||||||
|
|
||||||
|
|
||||||
|
def plaintext_to_html(text):
|
||||||
|
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
|
||||||
|
return text
|
||||||
|
1
webui.py
1
webui.py
@ -22,7 +22,6 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
|||||||
|
|
||||||
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
|
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
|
||||||
import modules.codeformer_model as codeformer
|
import modules.codeformer_model as codeformer
|
||||||
import modules.extras
|
|
||||||
import modules.face_restoration
|
import modules.face_restoration
|
||||||
import modules.gfpgan_model as gfpgan
|
import modules.gfpgan_model as gfpgan
|
||||||
import modules.img2img
|
import modules.img2img
|
||||||
|
Loading…
Reference in New Issue
Block a user