From 6a9b33c848281cb02f38764e4f91ef767f5e3edd Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 7 Sep 2022 12:32:28 +0300 Subject: [PATCH] codeformer support --- modules/codeformer/codeformer_arch.py | 276 ++++++++++++++++ modules/codeformer/vqgan_arch.py | 435 ++++++++++++++++++++++++++ modules/codeformer_model.py | 108 +++++++ modules/face_restoration.py | 19 ++ modules/gfpgan_model.py | 20 +- modules/img2img.py | 4 +- modules/paths.py | 13 +- modules/processing.py | 12 +- modules/shared.py | 6 + modules/txt2img.py | 4 +- modules/ui.py | 15 +- webui.bat | 19 +- webui.py | 20 +- 13 files changed, 919 insertions(+), 32 deletions(-) create mode 100644 modules/codeformer/codeformer_arch.py create mode 100644 modules/codeformer/vqgan_arch.py create mode 100644 modules/codeformer_model.py create mode 100644 modules/face_restoration.py diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py new file mode 100644 index 00000000..0eff93dc --- /dev/null +++ b/modules/codeformer/codeformer_arch.py @@ -0,0 +1,276 @@ +import math +import numpy as np +import torch +from torch import nn, Tensor +import torch.nn.functional as F +from typing import Optional, List + +from modules.codeformer.vqgan_arch import * +from basicsr.utils import get_root_logger +from basicsr.utils.registry import ARCH_REGISTRY + +def calc_mean_std(feat, eps=1e-5): + """Calculate mean and std for adaptive_instance_normalization. + + Args: + feat (Tensor): 4D tensor. + eps (float): A small value added to the variance to avoid + divide-by-zero. Default: 1e-5. + """ + size = feat.size() + assert len(size) == 4, 'The input feature should be 4D tensor.' + b, c = size[:2] + feat_var = feat.view(b, c, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(b, c, 1, 1) + feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) + return feat_mean, feat_std + + +def adaptive_instance_normalization(content_feat, style_feat): + """Adaptive instance normalization. + + Adjust the reference features to have the similar color and illuminations + as those in the degradate features. + + Args: + content_feat (Tensor): The reference feature. + style_feat (Tensor): The degradate features. + """ + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat) + content_mean, content_std = calc_mean_std(content_feat) + normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, x, mask=None): + if mask is None: + mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) + not_mask = ~mask + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + +def _get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(F"activation should be relu/gelu, not {activation}.") + + +class TransformerSALayer(nn.Module): + def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): + super().__init__() + self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) + # Implementation of Feedforward model - MLP + self.linear1 = nn.Linear(embed_dim, dim_mlp) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_mlp, embed_dim) + + self.norm1 = nn.LayerNorm(embed_dim) + self.norm2 = nn.LayerNorm(embed_dim) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward(self, tgt, + tgt_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None): + + # self attention + tgt2 = self.norm1(tgt) + q = k = self.with_pos_embed(tgt2, query_pos) + tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, + key_padding_mask=tgt_key_padding_mask)[0] + tgt = tgt + self.dropout1(tgt2) + + # ffn + tgt2 = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout2(tgt2) + return tgt + +class Fuse_sft_block(nn.Module): + def __init__(self, in_ch, out_ch): + super().__init__() + self.encode_enc = ResBlock(2*in_ch, out_ch) + + self.scale = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) + + self.shift = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) + + def forward(self, enc_feat, dec_feat, w=1): + enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) + scale = self.scale(enc_feat) + shift = self.shift(enc_feat) + residual = w * (dec_feat * scale + shift) + out = dec_feat + residual + return out + + +@ARCH_REGISTRY.register() +class CodeFormer(VQAutoEncoder): + def __init__(self, dim_embd=512, n_head=8, n_layers=9, + codebook_size=1024, latent_size=256, + connect_list=['32', '64', '128', '256'], + fix_modules=['quantize','generator']): + super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) + + if fix_modules is not None: + for module in fix_modules: + for param in getattr(self, module).parameters(): + param.requires_grad = False + + self.connect_list = connect_list + self.n_layers = n_layers + self.dim_embd = dim_embd + self.dim_mlp = dim_embd*2 + + self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) + self.feat_emb = nn.Linear(256, self.dim_embd) + + # transformer + self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) + for _ in range(self.n_layers)]) + + # logits_predict head + self.idx_pred_layer = nn.Sequential( + nn.LayerNorm(dim_embd), + nn.Linear(dim_embd, codebook_size, bias=False)) + + self.channels = { + '16': 512, + '32': 256, + '64': 256, + '128': 128, + '256': 128, + '512': 64, + } + + # after second residual block for > 16, before attn layer for ==16 + self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} + # after first residual block for > 16, before attn layer for ==16 + self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} + + # fuse_convs_dict + self.fuse_convs_dict = nn.ModuleDict() + for f_size in self.connect_list: + in_ch = self.channels[f_size] + self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) + + def _init_weights(self, module): + if isinstance(module, (nn.Linear, nn.Embedding)): + module.weight.data.normal_(mean=0.0, std=0.02) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): + # ################### Encoder ##################### + enc_feat_dict = {} + out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] + for i, block in enumerate(self.encoder.blocks): + x = block(x) + if i in out_list: + enc_feat_dict[str(x.shape[-1])] = x.clone() + + lq_feat = x + # ################# Transformer ################### + # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) + pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) + # BCHW -> BC(HW) -> (HW)BC + feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) + query_emb = feat_emb + # Transformer encoder + for layer in self.ft_layers: + query_emb = layer(query_emb, query_pos=pos_emb) + + # output logits + logits = self.idx_pred_layer(query_emb) # (hw)bn + logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n + + if code_only: # for training stage II + # logits doesn't need softmax before cross_entropy loss + return logits, lq_feat + + # ################# Quantization ################### + # if self.training: + # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) + # # b(hw)c -> bc(hw) -> bchw + # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) + # ------------ + soft_one_hot = F.softmax(logits, dim=2) + _, top_idx = torch.topk(soft_one_hot, 1, dim=2) + quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) + # preserve gradients + # quant_feat = lq_feat + (quant_feat - lq_feat).detach() + + if detach_16: + quant_feat = quant_feat.detach() # for training stage III + if adain: + quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) + + # ################## Generator #################### + x = quant_feat + fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] + + for i, block in enumerate(self.generator.blocks): + x = block(x) + if i in fuse_list: # fuse after i-th block + f_size = str(x.shape[-1]) + if w>0: + x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) + out = x + # logits doesn't need softmax before cross_entropy loss + return out, logits, lq_feat \ No newline at end of file diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py new file mode 100644 index 00000000..f6dfcf4c --- /dev/null +++ b/modules/codeformer/vqgan_arch.py @@ -0,0 +1,435 @@ +''' +VQGAN code, adapted from the original created by the Unleashing Transformers authors: +https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py + +''' +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import copy +from basicsr.utils import get_root_logger +from basicsr.utils.registry import ARCH_REGISTRY + +def normalize(in_channels): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + + +@torch.jit.script +def swish(x): + return x*torch.sigmoid(x) + + +# Define VQVAE classes +class VectorQuantizer(nn.Module): + def __init__(self, codebook_size, emb_dim, beta): + super(VectorQuantizer, self).__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 + self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) + self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) + + def forward(self, z): + # reshape z -> (batch, height, width, channel) and flatten + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.emb_dim) + + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ + 2 * torch.matmul(z_flattened, self.embedding.weight.t()) + + mean_distance = torch.mean(d) + # find closest encodings + # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) + min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) + # [0-1], higher score, higher confidence + min_encoding_scores = torch.exp(-min_encoding_scores/10) + + min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) + min_encodings.scatter_(1, min_encoding_indices, 1) + + # get quantized latent vectors + z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) + # compute loss for embedding + loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2) + # preserve gradients + z_q = z + (z_q - z).detach() + + # perplexity + e_mean = torch.mean(min_encodings, dim=0) + perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return z_q, loss, { + "perplexity": perplexity, + "min_encodings": min_encodings, + "min_encoding_indices": min_encoding_indices, + "min_encoding_scores": min_encoding_scores, + "mean_distance": mean_distance + } + + def get_codebook_feat(self, indices, shape): + # input indices: batch*token_num -> (batch*token_num)*1 + # shape: batch, height, width, channel + indices = indices.view(-1,1) + min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) + min_encodings.scatter_(1, indices, 1) + # get quantized latent vectors + z_q = torch.matmul(min_encodings.float(), self.embedding.weight) + + if shape is not None: # reshape back to match original input shape + z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() + + return z_q + + +class GumbelQuantizer(nn.Module): + def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): + super().__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.straight_through = straight_through + self.temperature = temp_init + self.kl_weight = kl_weight + self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits + self.embed = nn.Embedding(codebook_size, emb_dim) + + def forward(self, z): + hard = self.straight_through if self.training else True + + logits = self.proj(z) + + soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) + + z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) + + # + kl divergence to the prior loss + qy = F.softmax(logits, dim=1) + diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() + min_encoding_indices = soft_one_hot.argmax(dim=1) + + return z_q, diff, { + "min_encoding_indices": min_encoding_indices + } + + +class Downsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, x): + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + return x + + +class Upsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, x): + x = F.interpolate(x, scale_factor=2.0, mode="nearest") + x = self.conv(x) + + return x + + +class ResBlock(nn.Module): + def __init__(self, in_channels, out_channels=None): + super(ResBlock, self).__init__() + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.norm1 = normalize(in_channels) + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.norm2 = normalize(out_channels) + self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x_in): + x = x_in + x = self.norm1(x) + x = swish(x) + x = self.conv1(x) + x = self.norm2(x) + x = swish(x) + x = self.conv2(x) + if self.in_channels != self.out_channels: + x_in = self.conv_out(x_in) + + return x + x_in + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h*w) + q = q.permute(0, 2, 1) + k = k.reshape(b, c, h*w) + w_ = torch.bmm(q, k) + w_ = w_ * (int(c)**(-0.5)) + w_ = F.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h*w) + w_ = w_.permute(0, 2, 1) + h_ = torch.bmm(v, w_) + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x+h_ + + +class Encoder(nn.Module): + def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions): + super().__init__() + self.nf = nf + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.attn_resolutions = attn_resolutions + + curr_res = self.resolution + in_ch_mult = (1,)+tuple(ch_mult) + + blocks = [] + # initial convultion + blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) + + # residual and downsampling blocks, with attention on smaller res (16x16) + for i in range(self.num_resolutions): + block_in_ch = nf * in_ch_mult[i] + block_out_ch = nf * ch_mult[i] + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + if curr_res in attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != self.num_resolutions - 1: + blocks.append(Downsample(block_in_ch)) + curr_res = curr_res // 2 + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) + blocks.append(AttnBlock(block_in_ch)) + blocks.append(ResBlock(block_in_ch, block_in_ch)) + + # normalise and convert to latent size + blocks.append(normalize(block_in_ch)) + blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)) + self.blocks = nn.ModuleList(blocks) + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +class Generator(nn.Module): + def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): + super().__init__() + self.nf = nf + self.ch_mult = ch_mult + self.num_resolutions = len(self.ch_mult) + self.num_res_blocks = res_blocks + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.in_channels = emb_dim + self.out_channels = 3 + block_in_ch = self.nf * self.ch_mult[-1] + curr_res = self.resolution // 2 ** (self.num_resolutions-1) + + blocks = [] + # initial conv + blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) + blocks.append(AttnBlock(block_in_ch)) + blocks.append(ResBlock(block_in_ch, block_in_ch)) + + for i in reversed(range(self.num_resolutions)): + block_out_ch = self.nf * self.ch_mult[i] + + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + + if curr_res in self.attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != 0: + blocks.append(Upsample(block_in_ch)) + curr_res = curr_res * 2 + + blocks.append(normalize(block_in_ch)) + blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) + + self.blocks = nn.ModuleList(blocks) + + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +@ARCH_REGISTRY.register() +class VQAutoEncoder(nn.Module): + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): + super().__init__() + logger = get_root_logger() + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks + self.codebook_size = codebook_size + self.embed_dim = emb_dim + self.ch_mult = ch_mult + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.quantizer_type = quantizer + self.encoder = Encoder( + self.in_channels, + self.nf, + self.embed_dim, + self.ch_mult, + self.n_blocks, + self.resolution, + self.attn_resolutions + ) + if self.quantizer_type == "nearest": + self.beta = beta #0.25 + self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) + elif self.quantizer_type == "gumbel": + self.gumbel_num_hiddens = emb_dim + self.straight_through = gumbel_straight_through + self.kl_weight = gumbel_kl_weight + self.quantize = GumbelQuantizer( + self.codebook_size, + self.embed_dim, + self.gumbel_num_hiddens, + self.straight_through, + self.kl_weight + ) + self.generator = Generator( + self.nf, + self.embed_dim, + self.ch_mult, + self.n_blocks, + self.resolution, + self.attn_resolutions + ) + + if model_path is not None: + chkpt = torch.load(model_path, map_location='cpu') + if 'params_ema' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) + logger.info(f'vqgan is loaded from: {model_path} [params_ema]') + elif 'params' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) + logger.info(f'vqgan is loaded from: {model_path} [params]') + else: + raise ValueError(f'Wrong params!') + + + def forward(self, x): + x = self.encoder(x) + quant, codebook_loss, quant_stats = self.quantize(x) + x = self.generator(quant) + return x, codebook_loss, quant_stats + + + +# patch based discriminator +@ARCH_REGISTRY.register() +class VQGANDiscriminator(nn.Module): + def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None): + super().__init__() + + layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)] + ndf_mult = 1 + ndf_mult_prev = 1 + for n in range(1, n_layers): # gradually increase the number of filters + ndf_mult_prev = ndf_mult + ndf_mult = min(2 ** n, 8) + layers += [ + nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(ndf * ndf_mult), + nn.LeakyReLU(0.2, True) + ] + + ndf_mult_prev = ndf_mult + ndf_mult = min(2 ** n_layers, 8) + + layers += [ + nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False), + nn.BatchNorm2d(ndf * ndf_mult), + nn.LeakyReLU(0.2, True) + ] + + layers += [ + nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map + self.main = nn.Sequential(*layers) + + if model_path is not None: + chkpt = torch.load(model_path, map_location='cpu') + if 'params_d' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d']) + elif 'params' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) + else: + raise ValueError(f'Wrong params!') + + def forward(self, x): + return self.main(x) \ No newline at end of file diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py new file mode 100644 index 00000000..836417c2 --- /dev/null +++ b/modules/codeformer_model.py @@ -0,0 +1,108 @@ +import os +import sys +import traceback +import torch + +from modules import shared +from modules.paths import script_path +import modules.shared +import modules.face_restoration +from importlib import reload + +# codeformer people made a choice to include modified basicsr librry to their projectwhich makes +# it utterly impossiblr to use it alongside with other libraries that also use basicsr, like GFPGAN. +# I am making a choice to include some files from codeformer to work around this issue. + +pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' + +have_codeformer = False + +def setup_codeformer(): + path = modules.paths.paths.get("CodeFormer", None) + if path is None: + return + + + # both GFPGAN and CodeFormer use bascisr, one has it installed from pip the other uses its own + #stored_sys_path = sys.path + #sys.path = [path] + sys.path + + try: + from torchvision.transforms.functional import normalize + from modules.codeformer.codeformer_arch import CodeFormer + from basicsr.utils.download_util import load_file_from_url + from basicsr.utils import imwrite, img2tensor, tensor2img + from facelib.utils.face_restoration_helper import FaceRestoreHelper + from modules.shared import cmd_opts + + net_class = CodeFormer + + class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): + def name(self): + return "CodeFormer" + + def __init__(self): + self.net = None + self.face_helper = None + + def create_models(self): + + if self.net is not None and self.face_helper is not None: + return self.net, self.face_helper + + net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(shared.device) + ckpt_path = load_file_from_url(url=pretrain_model_url, model_dir=os.path.join(path, 'weights/CodeFormer'), progress=True) + checkpoint = torch.load(ckpt_path)['params_ema'] + net.load_state_dict(checkpoint) + net.eval() + + face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=shared.device) + + if not cmd_opts.unload_gfpgan: + self.net = net + self.face_helper = face_helper + + return net, face_helper + + def restore(self, np_image): + np_image = np_image[:, :, ::-1] + + net, face_helper = self.create_models() + face_helper.clean_all() + face_helper.read_image(np_image) + face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) + face_helper.align_warp_face() + + for idx, cropped_face in enumerate(face_helper.cropped_faces): + cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) + normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) + cropped_face_t = cropped_face_t.unsqueeze(0).to(shared.device) + + try: + with torch.no_grad(): + output = net(cropped_face_t, w=shared.opts.code_former_weight, adain=True)[0] + restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) + del output + torch.cuda.empty_cache() + except Exception as error: + print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) + restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) + + restored_face = restored_face.astype('uint8') + face_helper.add_restored_face(restored_face) + + face_helper.get_inverse_affine(None) + + restored_img = face_helper.paste_faces_to_input_image() + restored_img = restored_img[:, :, ::-1] + return restored_img + + global have_codeformer + have_codeformer = True + shared.face_restorers.append(FaceRestorerCodeFormer()) + + except Exception: + print("Error setting up CodeFormer:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + # sys.path = stored_sys_path diff --git a/modules/face_restoration.py b/modules/face_restoration.py new file mode 100644 index 00000000..4ae53d21 --- /dev/null +++ b/modules/face_restoration.py @@ -0,0 +1,19 @@ +from modules import shared + + +class FaceRestoration: + def name(self): + return "None" + + def restore(self, np_image): + return np_image + + +def restore_faces(np_image): + face_restorers = [x for x in shared.face_restorers if x.name() == shared.opts.face_restoration_model or shared.opts.face_restoration_model is None] + if len(face_restorers) == 0: + return np_image + + face_restorer = face_restorers[0] + + return face_restorer.restore(np_image) diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index 334a1b7f..f697326c 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -2,12 +2,15 @@ import os import sys import traceback -from modules.paths import script_path +from modules import shared from modules.shared import cmd_opts -import modules.shared +from modules.paths import script_path +import modules.face_restoration def gfpgan_model_path(): + from modules.shared import cmd_opts + places = [script_path, '.', os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models')] files = [cmd_opts.gfpgan_model] + [os.path.join(dirname, cmd_opts.gfpgan_model) for dirname in places] found = [x for x in files if os.path.exists(x)] @@ -62,6 +65,19 @@ def setup_gfpgan(): global gfpgan_constructor gfpgan_constructor = GFPGANer + + class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): + def name(self): + return "GFPGAN" + + def restore(self, np_image): + np_image_bgr = np_image[:, :, ::-1] + cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) + np_image = gfpgan_output_bgr[:, :, ::-1] + + return np_image + + shared.face_restorers.append(FaceRestorerGFPGAN()) except Exception: print("Error setting up GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) diff --git a/modules/img2img.py b/modules/img2img.py index 4d8d4818..3129798d 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -9,7 +9,7 @@ from modules.ui import plaintext_to_html import modules.images as images import modules.scripts -def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, use_GFPGAN: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args): +def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args): is_inpaint = mode == 1 is_loopback = mode == 2 is_upscale = mode == 3 @@ -36,7 +36,7 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index cfg_scale=cfg_scale, width=width, height=height, - use_GFPGAN=use_GFPGAN, + restore_faces=restore_faces, tiling=tiling, init_images=[image], mask=mask, diff --git a/modules/paths.py b/modules/paths.py index e1559bc7..6cf5e2b6 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -5,7 +5,7 @@ import sys script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0, script_path) -# use current directory as SD dir if it has related files, otherwise parent dir of script as stated in guide +# search for directory of stable diffsuion in following palces sd_path = None possible_sd_paths = ['.', os.path.dirname(script_path), os.path.join(script_path, 'repositories/stable-diffusion')] for possible_sd_path in possible_sd_paths: @@ -14,14 +14,19 @@ for possible_sd_path in possible_sd_paths: assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + possible_sd_paths -# add parent directory to path; this is where Stable diffusion repo should be path_dirs = [ (sd_path, 'ldm', 'Stable Diffusion'), - (os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers') + (os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers'), + (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer'), ] + +paths = {} + for d, must_exist, what in path_dirs: must_exist_path = os.path.abspath(os.path.join(script_path, d, must_exist)) if not os.path.exists(must_exist_path): print(f"Warning: {what} not found at path {must_exist_path}", file=sys.stderr) else: - sys.path.append(os.path.join(script_path, d)) + d = os.path.abspath(d) + sys.path.append(d) + paths[what] = d diff --git a/modules/processing.py b/modules/processing.py index 78bc73b9..49474b73 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -14,7 +14,7 @@ from modules.sd_hijack import model_hijack from modules.sd_samplers import samplers, samplers_for_img2img from modules.shared import opts, cmd_opts, state import modules.shared as shared -import modules.gfpgan_model as gfpgan +import modules.face_restoration import modules.images as images # some of those options should not be changed at all because they would break the model, so I removed them from options. @@ -29,7 +29,7 @@ def torch_gc(): class StableDiffusionProcessing: - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", seed=-1, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, use_GFPGAN=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", seed=-1, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None): self.sd_model = sd_model self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids @@ -44,7 +44,7 @@ class StableDiffusionProcessing: self.cfg_scale: float = cfg_scale self.width: int = width self.height: int = height - self.use_GFPGAN: bool = use_GFPGAN + self.restore_faces: bool = restore_faces self.tiling: bool = tiling self.do_not_save_samples: bool = do_not_save_samples self.do_not_save_grid: bool = do_not_save_grid @@ -136,7 +136,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: "Sampler": samplers[p.sampler_index].name, "CFG scale": p.cfg_scale, "Seed": all_seeds[position_in_batch + iteration * p.batch_size], - "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None), + "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), } @@ -193,10 +193,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed: x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) - if p.use_GFPGAN: + if p.restore_faces: torch_gc() - x_sample = gfpgan.gfpgan_fix_faces(x_sample) + x_sample = modules.face_restoration.restore_faces(x_sample) image = Image.fromarray(x_sample) diff --git a/modules/shared.py b/modules/shared.py index fb5bbd43..12082895 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,11 +1,13 @@ import argparse import json import os + import gradio as gr import torch import modules.artists from modules.paths import script_path, sd_path +import modules.codeformer_model config_filename = "config.json" @@ -40,6 +42,7 @@ device = gpu if torch.cuda.is_available() else cpu batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram + class State: interrupted = False job = "" @@ -65,6 +68,7 @@ state = State() artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv')) +face_restorers = [] def find_any_font(): fonts = ['/usr/share/fonts/truetype/liberation/LiberationSans-Regular.ttf'] @@ -116,6 +120,8 @@ class Options: "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}), "show_progressbar": OptionInfo(True, "Show progressbar"), "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), + "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), + "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), } def __init__(self): diff --git a/modules/txt2img.py b/modules/txt2img.py index dfce49ff..fd81ff0f 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -6,7 +6,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, steps: int, sampler_index: int, use_GFPGAN: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int, *args): +def txt2img(prompt: str, negative_prompt: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -21,7 +21,7 @@ def txt2img(prompt: str, negative_prompt: str, steps: int, sampler_index: int, u cfg_scale=cfg_scale, width=width, height=height, - use_GFPGAN=use_GFPGAN, + restore_faces=restore_faces, tiling=tiling, ) diff --git a/modules/ui.py b/modules/ui.py index 92d8bcdd..05161b00 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -206,7 +206,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index") with gr.Row(): - use_gfpgan = gr.Checkbox(label='GFPGAN', value=False, visible=gfpgan.have_gfpgan) + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) with gr.Row(): @@ -253,7 +253,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): negative_prompt, steps, sampler_index, - use_gfpgan, + restore_faces, tiling, batch_count, batch_size, @@ -335,7 +335,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): inpainting_mask_invert = gr.Radio(label='Masking mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", visible=False) with gr.Row(): - use_gfpgan = gr.Checkbox(label='GFPGAN', value=False, visible=gfpgan.have_gfpgan) + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) tiling = gr.Checkbox(label='Tiling', value=False) sd_upscale_overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False) @@ -425,7 +425,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): sampler_index, mask_blur, inpainting_fill, - use_gfpgan, + restore_faces, tiling, switch_mode, batch_count, @@ -521,7 +521,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1) with gr.Group(): - gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN strength", value=0, interactive=gfpgan.have_gfpgan) + face_restoration_blending = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Faces restoration visibility", value=0, interactive=len(shared.face_restorers) > 1) submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') @@ -534,7 +534,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): fn=run_extras, inputs=[ image, - gfpgan_strength, + face_restoration_blending, upscaling_resize, extras_upscaler_1, extras_upscaler_2, @@ -585,7 +585,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): t = type(info.default) if info.component is not None: - item = info.component(label=info.label, value=fun, **(info.component_args or {})) + args = info.component_args() if callable(info.component_args) else info.component_args + item = info.component(label=info.label, value=fun, **(args or {})) elif t == str: item = gr.Textbox(label=info.label, value=fun, lines=1) elif t == int: diff --git a/webui.bat b/webui.bat index ed724362..055a19b0 100644 --- a/webui.bat +++ b/webui.bat @@ -92,6 +92,7 @@ echo Installing requirements... %PYTHON% -m pip install -r %REQS_FILE% --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt if %ERRORLEVEL% == 0 goto :update_numpy goto :show_stdout_stderr + :update_numpy %PYTHON% -m pip install -U numpy --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt @@ -105,12 +106,28 @@ if %ERRORLEVEL% == 0 goto :clone_transformers goto :show_stdout_stderr :clone_transformers -if exist repositories\taming-transformers goto :check_model +if exist repositories\taming-transformers goto :clone_codeformer echo Cloning Taming Transforming repository... %GIT% clone https://github.com/CompVis/taming-transformers.git repositories\taming-transformers >tmp/stdout.txt 2>tmp/stderr.txt +if %ERRORLEVEL% == 0 goto :clone_codeformer +goto :show_stdout_stderr + +:clone_codeformer +if exist repositories\CodeFormer goto :install_codeformer_reqs +echo Cloning CodeFormer repository... +%GIT% clone https://github.com/sczhou/CodeFormer.git repositories\CodeFormer >tmp/stdout.txt 2>tmp/stderr.txt +if %ERRORLEVEL% == 0 goto :install_codeformer_reqs +goto :show_stdout_stderr + +:install_codeformer_reqs +%PYTHON% -c "import lpips" >tmp/stdout.txt 2>tmp/stderr.txt +if %ERRORLEVEL% == 0 goto :check_model +echo Installing requirements for CodeFormer... +%PYTHON% -m pip install -r repositories\CodeFormer\requirements.txt --prefer-binary >tmp/stdout.txt 2>tmp/stderr.txt if %ERRORLEVEL% == 0 goto :check_model goto :show_stdout_stderr + :check_model dir model.ckpt >tmp/stdout.txt 2>tmp/stderr.txt if %ERRORLEVEL% == 0 goto :check_gfpgan diff --git a/webui.py b/webui.py index d20ff38f..c9a800dd 100644 --- a/webui.py +++ b/webui.py @@ -19,7 +19,9 @@ from modules.ui import plaintext_to_html import modules.scripts import modules.processing as processing import modules.sd_hijack -import modules.gfpgan_model as gfpgan +import modules.codeformer_model +import modules.gfpgan_model +import modules.face_restoration import modules.realesrgan_model as realesrgan import modules.esrgan_model as esrgan import modules.images as images @@ -28,10 +30,12 @@ import modules.txt2img import modules.img2img +modules.codeformer_model.setup_codeformer() +modules.gfpgan_model.setup_gfpgan() +shared.face_restorers.append(modules.face_restoration.FaceRestoration()) + esrgan.load_models(cmd_opts.esrgan_models_path) realesrgan.setup_realesrgan() -gfpgan.setup_gfpgan() - def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") @@ -54,19 +58,19 @@ def load_model_from_config(config, ckpt, verbose=False): cached_images = {} -def run_extras(image, gfpgan_strength, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): +def run_extras(image, face_restoration_blending, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): processing.torch_gc() image = image.convert("RGB") outpath = opts.outdir_samples or opts.outdir_extras_samples - if gfpgan.have_gfpgan is not None and gfpgan_strength > 0: - restored_img = gfpgan.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) + if face_restoration_blending > 0: + restored_img = modules.face_restoration.restore_faces(np.array(image, dtype=np.uint8)) res = Image.fromarray(restored_img) - if gfpgan_strength < 1.0: - res = Image.blend(image, res, gfpgan_strength) + if face_restoration_blending < 1.0: + res = Image.blend(image, res, face_restoration_blending) image = res