added poor man's inpainting script
This commit is contained in:
parent
af133859f0
commit
7350c71259
@ -39,23 +39,26 @@ def split_grid(image, tile_w=512, tile_h=512, overlap=64):
|
||||
w = image.width
|
||||
h = image.height
|
||||
|
||||
now = tile_w - overlap # non-overlap width
|
||||
noh = tile_h - overlap
|
||||
non_overlap_width = tile_w - overlap
|
||||
non_overlap_height = tile_h - overlap
|
||||
|
||||
cols = math.ceil((w - overlap) / now)
|
||||
rows = math.ceil((h - overlap) / noh)
|
||||
cols = math.ceil((w - overlap) / non_overlap_width)
|
||||
rows = math.ceil((h - overlap) / non_overlap_height)
|
||||
|
||||
dx = (w - tile_w) // (cols-1) if cols > 1 else 0
|
||||
dy = (h - tile_h) // (rows-1) if rows > 1 else 0
|
||||
|
||||
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
||||
for row in range(rows):
|
||||
row_images = []
|
||||
|
||||
y = row * noh
|
||||
y = row * dy
|
||||
|
||||
if y + tile_h >= h:
|
||||
y = h - tile_h
|
||||
|
||||
for col in range(cols):
|
||||
x = col * now
|
||||
x = col * dx
|
||||
|
||||
if x+tile_w >= w:
|
||||
x = w - tile_w
|
||||
|
@ -130,7 +130,7 @@ def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index
|
||||
|
||||
else:
|
||||
|
||||
processed = modules.scripts.run(p, *args)
|
||||
processed = modules.scripts.scripts_img2img.run(p, *args)
|
||||
|
||||
if processed is None:
|
||||
processed = process_images(p)
|
||||
|
@ -271,7 +271,7 @@ def fill(image, mask):
|
||||
|
||||
image_masked = image_masked.convert('RGBa')
|
||||
|
||||
for radius, repeats in [(64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
|
||||
for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
|
||||
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
|
||||
for _ in range(repeats):
|
||||
image_mod.alpha_composite(blurred)
|
||||
@ -290,6 +290,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.denoising_strength: float = denoising_strength
|
||||
self.init_latent = None
|
||||
self.image_mask = mask
|
||||
#self.image_unblurred_mask = None
|
||||
self.latent_mask = None
|
||||
self.mask_for_overlay = None
|
||||
self.mask_blur = mask_blur
|
||||
self.inpainting_fill = inpainting_fill
|
||||
@ -308,6 +310,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.inpainting_mask_invert:
|
||||
self.image_mask = ImageOps.invert(self.image_mask)
|
||||
|
||||
#self.image_unblurred_mask = self.image_mask
|
||||
|
||||
if self.mask_blur > 0:
|
||||
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||
|
||||
@ -368,7 +372,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||
|
||||
if self.image_mask is not None:
|
||||
latmask = self.image_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
init_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
|
||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float64), 2, 0) / 255
|
||||
latmask = latmask[0]
|
||||
latmask = np.tile(latmask[None], (4, 1, 1))
|
||||
|
@ -18,6 +18,9 @@ class Script:
|
||||
def ui(self, is_img2img):
|
||||
pass
|
||||
|
||||
def show(self, is_img2img):
|
||||
return True
|
||||
|
||||
def run(self, *args):
|
||||
raise NotImplementedError()
|
||||
|
||||
@ -25,7 +28,7 @@ class Script:
|
||||
return ""
|
||||
|
||||
|
||||
scripts = []
|
||||
scripts_data = []
|
||||
|
||||
|
||||
def load_scripts(basedir):
|
||||
@ -49,10 +52,8 @@ def load_scripts(basedir):
|
||||
|
||||
for key, script_class in module.__dict__.items():
|
||||
if type(script_class) == type and issubclass(script_class, Script):
|
||||
obj = script_class()
|
||||
obj.filename = path
|
||||
scripts_data.append((script_class, path))
|
||||
|
||||
scripts.append(obj)
|
||||
except Exception:
|
||||
print(f"Error loading script: {filename}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
@ -69,52 +70,75 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
|
||||
return default
|
||||
|
||||
|
||||
def setup_ui(is_img2img):
|
||||
titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in scripts]
|
||||
class ScriptRunner:
|
||||
def __init__(self):
|
||||
self.scripts = []
|
||||
|
||||
dropdown = gr.Dropdown(label="Script", choices=["None"] + titles, value="None", type="index")
|
||||
def setup_ui(self, is_img2img):
|
||||
for script_class, path in scripts_data:
|
||||
script = script_class()
|
||||
script.filename = path
|
||||
|
||||
inputs = [dropdown]
|
||||
if not script.show(is_img2img):
|
||||
continue
|
||||
|
||||
for script in scripts:
|
||||
script.args_from = len(inputs)
|
||||
controls = script.ui(is_img2img)
|
||||
self.scripts.append(script)
|
||||
|
||||
for control in controls:
|
||||
control.visible = False
|
||||
titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
|
||||
|
||||
inputs += controls
|
||||
script.args_to = len(inputs)
|
||||
dropdown = gr.Dropdown(label="Script", choices=["None"] + titles, value="None", type="index")
|
||||
inputs = [dropdown]
|
||||
|
||||
def select_script(index):
|
||||
if index > 0:
|
||||
script = scripts[index-1]
|
||||
args_from = script.args_from
|
||||
args_to = script.args_to
|
||||
else:
|
||||
args_from = 0
|
||||
args_to = 0
|
||||
for script in self.scripts:
|
||||
script.args_from = len(inputs)
|
||||
|
||||
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
|
||||
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
|
||||
|
||||
dropdown.change(
|
||||
fn=select_script,
|
||||
inputs=[dropdown],
|
||||
outputs=inputs
|
||||
)
|
||||
if controls is None:
|
||||
continue
|
||||
|
||||
return inputs
|
||||
for control in controls:
|
||||
control.visible = False
|
||||
|
||||
inputs += controls
|
||||
script.args_to = len(inputs)
|
||||
|
||||
def select_script(script_index):
|
||||
if 0 < script_index <= len(self.scripts):
|
||||
script = self.scripts[script_index-1]
|
||||
args_from = script.args_from
|
||||
args_to = script.args_to
|
||||
else:
|
||||
args_from = 0
|
||||
args_to = 0
|
||||
|
||||
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
|
||||
|
||||
dropdown.change(
|
||||
fn=select_script,
|
||||
inputs=[dropdown],
|
||||
outputs=inputs
|
||||
)
|
||||
|
||||
return inputs
|
||||
|
||||
|
||||
def run(p: StableDiffusionProcessing, *args):
|
||||
script_index = args[0] - 1
|
||||
def run(self, p: StableDiffusionProcessing, *args):
|
||||
script_index = args[0]
|
||||
|
||||
if script_index < 0 or script_index >= len(scripts):
|
||||
return None
|
||||
if script_index == 0:
|
||||
return None
|
||||
|
||||
script = scripts[script_index]
|
||||
script = self.scripts[script_index-1]
|
||||
|
||||
script_args = args[script.args_from:script.args_to]
|
||||
processed = script.run(p, *script_args)
|
||||
if script is None:
|
||||
return None
|
||||
|
||||
return processed
|
||||
script_args = args[script.args_from:script.args_to]
|
||||
processed = script.run(p, *script_args)
|
||||
|
||||
return processed
|
||||
|
||||
|
||||
scripts_txt2img = ScriptRunner()
|
||||
scripts_img2img = ScriptRunner()
|
||||
|
@ -24,7 +24,7 @@ def txt2img(prompt: str, negative_prompt: str, steps: int, sampler_index: int, u
|
||||
use_GFPGAN=use_GFPGAN
|
||||
)
|
||||
|
||||
processed = modules.scripts.run(p, *args)
|
||||
processed = modules.scripts.scripts_txt2img.run(p, *args)
|
||||
|
||||
if processed is not None:
|
||||
pass
|
||||
|
@ -162,7 +162,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
||||
seed = gr.Number(label='Seed', value=-1)
|
||||
|
||||
with gr.Group():
|
||||
custom_inputs = modules.scripts.setup_ui(is_img2img=False)
|
||||
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
with gr.Group():
|
||||
@ -244,7 +244,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
||||
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", visible=False)
|
||||
|
||||
with gr.Row():
|
||||
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=True, visible=False)
|
||||
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False, visible=False)
|
||||
inpainting_mask_invert = gr.Radio(label='Masking mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", visible=False)
|
||||
|
||||
with gr.Row():
|
||||
@ -269,7 +269,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
|
||||
seed = gr.Number(label='Seed', value=-1)
|
||||
|
||||
with gr.Group():
|
||||
custom_inputs = modules.scripts.setup_ui(is_img2img=True)
|
||||
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
|
||||
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
|
110
scripts/poor_mans_outpainting.py
Normal file
110
scripts/poor_mans_outpainting.py
Normal file
@ -0,0 +1,110 @@
|
||||
import math
|
||||
|
||||
import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
from modules import images, processing
|
||||
from modules.processing import Processed, process_images
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
def title(self):
|
||||
return "Poor man's outpainting"
|
||||
|
||||
def show(self, is_img2img):
|
||||
return is_img2img
|
||||
|
||||
def ui(self, is_img2img):
|
||||
if not is_img2img:
|
||||
return None
|
||||
|
||||
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=128, step=8)
|
||||
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, visible=False)
|
||||
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", visible=False)
|
||||
|
||||
return [pixels, mask_blur, inpainting_fill]
|
||||
|
||||
def run(self, p, pixels, mask_blur, inpainting_fill):
|
||||
initial_seed = None
|
||||
initial_info = None
|
||||
|
||||
p.mask_blur = mask_blur
|
||||
p.inpainting_fill = inpainting_fill
|
||||
p.inpaint_full_res = False
|
||||
|
||||
init_img = p.init_images[0]
|
||||
target_w = math.ceil((init_img.width + pixels * 2) / 64) * 64
|
||||
target_h = math.ceil((init_img.height + pixels * 2) / 64) * 64
|
||||
|
||||
border_x = (target_w - init_img.width)//2
|
||||
border_y = (target_h - init_img.height)//2
|
||||
|
||||
img = Image.new("RGB", (target_w, target_h))
|
||||
img.paste(init_img, (border_x, border_y))
|
||||
|
||||
mask = Image.new("L", (img.width, img.height), "white")
|
||||
draw = ImageDraw.Draw(mask)
|
||||
draw.rectangle((border_x + mask_blur * 2, border_y + mask_blur * 2, mask.width - border_x - mask_blur * 2, mask.height - border_y - mask_blur * 2), fill="black")
|
||||
|
||||
latent_mask = Image.new("L", (img.width, img.height), "white")
|
||||
latent_draw = ImageDraw.Draw(latent_mask)
|
||||
latent_draw.rectangle((border_x + 1, border_y + 1, mask.width - border_x - 1, mask.height - border_y - 1), fill="black")
|
||||
|
||||
processing.torch_gc()
|
||||
|
||||
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
||||
grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
||||
grid_latent_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
||||
|
||||
p.n_iter = 1
|
||||
p.batch_size = 1
|
||||
p.do_not_save_grid = True
|
||||
p.do_not_save_samples = True
|
||||
|
||||
work = []
|
||||
work_mask = []
|
||||
work_latent_mask = []
|
||||
work_results = []
|
||||
|
||||
for (_, _, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles):
|
||||
for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask):
|
||||
work.append(tiledata[2])
|
||||
work_mask.append(tiledata_mask[2])
|
||||
work_latent_mask.append(tiledata_latent_mask[2])
|
||||
|
||||
batch_count = len(work)
|
||||
print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.")
|
||||
|
||||
for i in range(batch_count):
|
||||
p.init_images = [work[i]]
|
||||
p.image_mask = work_mask[i]
|
||||
p.latent_mask = work_latent_mask[i]
|
||||
|
||||
state.job = f"Batch {i + 1} out of {batch_count}"
|
||||
processed = process_images(p)
|
||||
|
||||
if initial_seed is None:
|
||||
initial_seed = processed.seed
|
||||
initial_info = processed.info
|
||||
|
||||
p.seed = processed.seed + 1
|
||||
work_results += processed.images
|
||||
|
||||
image_index = 0
|
||||
for y, h, row in grid.tiles:
|
||||
for tiledata in row:
|
||||
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
||||
image_index += 1
|
||||
|
||||
combined_image = images.combine_grid(grid)
|
||||
|
||||
if opts.samples_save:
|
||||
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info)
|
||||
|
||||
processed = Processed(p, [combined_image], initial_seed, initial_info)
|
||||
|
||||
return processed
|
||||
|
Loading…
Reference in New Issue
Block a user