Merge branch 'dev' into tooltip

This commit is contained in:
AUTOMATIC1111 2023-05-08 09:01:25 +03:00 committed by GitHub
commit 73d956454f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
75 changed files with 1878 additions and 523 deletions

3
.gitignore vendored
View File

@ -32,4 +32,5 @@ notification.mp3
/extensions
/test/stdout.txt
/test/stderr.txt
/cache.json
/cache.json*
/config_states/

62
CHANGELOG.md Normal file
View File

@ -0,0 +1,62 @@
## 1.1.1
### Bug Fixes:
* fix an error that prevents running webui on torch<2.0 without --disable-safe-unpickle
## 1.1.0
### Features:
* switch to torch 2.0.0 (except for AMD GPUs)
* visual improvements to custom code scripts
* add filename patterns: [clip_skip], [hasprompt<>], [batch_number], [generation_number]
* add support for saving init images in img2img, and record their hashes in infotext for reproducability
* automatically select current word when adjusting weight with ctrl+up/down
* add dropdowns for X/Y/Z plot
* setting: Stable Diffusion/Random number generator source: makes it possible to make images generated from a given manual seed consistent across different GPUs
* support Gradio's theme API
* use TCMalloc on Linux by default; possible fix for memory leaks
* (optimization) option to remove negative conditioning at low sigma values #9177
* embed model merge metadata in .safetensors file
* extension settings backup/restore feature #9169
* add "resize by" and "resize to" tabs to img2img
* add option "keep original size" to textual inversion images preprocess
* image viewer scrolling via analog stick
* button to restore the progress from session lost / tab reload
### Minor:
* gradio bumped to 3.28.1
* in extra tab, change extras "scale to" to sliders
* add labels to tool buttons to make it possible to hide them
* add tiled inference support for ScuNET
* add branch support for extension installation
* change linux installation script to insall into current directory rather than /home/username
* sort textual inversion embeddings by name (case insensitive)
* allow styles.csv to be symlinked or mounted in docker
* remove the "do not add watermark to images" option
* make selected tab configurable with UI config
* extra networks UI in now fixed height and scrollable
* add disable_tls_verify arg for use with self-signed certs
### Extensions:
* Add reload callback
* add is_hr_pass field for processing
### Bug Fixes:
* fix broken batch image processing on 'Extras/Batch Process' tab
* add "None" option to extra networks dropdowns
* fix FileExistsError for CLIP Interrogator
* fix /sdapi/v1/txt2img endpoint not working on Linux #9319
* fix disappearing live previews and progressbar during slow tasks
* fix fullscreen image view not working properly in some cases
* prevent alwayson_scripts args param resizing script_arg list when they are inserted in it
* fix prompt schedule for second order samplers
* fix image mask/composite for weird resolutions #9628
* use correct images for previews when using AND (see #9491)
* one broken image in img2img batch won't stop all processing
* fix image orientation bug in train/preprocess
* fix Ngrok recreating tunnels every reload
* fix --realesrgan-models-path and --ldsr-models-path not working
* fix --skip-install not working
* outpainting Mk2 & Poorman should use the SAMPLE file format to save images, not GRID file format
* do not fail all Loras if some have failed to load when making a picture
## 1.0.0
* everything

View File

@ -100,7 +100,7 @@ Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH".
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
@ -115,11 +115,12 @@ sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).

View File

@ -4,8 +4,8 @@ channels:
- defaults
dependencies:
- python=3.10
- pip=22.2.2
- cudatoolkit=11.3
- pytorch=1.12.1
- torchvision=0.13.1
- numpy=1.23.1
- pip=23.0
- cudatoolkit=11.8
- pytorch=2.0
- torchvision=0.15
- numpy=1.23

View File

@ -25,22 +25,28 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"])
local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None)
local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None)
local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None)
if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760:
print("Removing invalid LDSR YAML file.")
os.remove(yaml_path)
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
if os.path.exists(safetensors_model_path):
model = safetensors_model_path
if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
model = local_safetensors_path
else:
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
file_name="project.yaml", progress=True)
model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="model.ckpt", progress=True)
yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_path, file_name="project.yaml", progress=True)
try:
return LDSR(model, yaml)

View File

@ -1,6 +1,7 @@
from modules import extra_networks, shared
import lora
class ExtraNetworkLora(extra_networks.ExtraNetwork):
def __init__(self):
super().__init__('lora')
@ -8,7 +9,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))

View File

@ -4,7 +4,7 @@ import re
import torch
from typing import Union
from modules import shared, devices, sd_models, errors
from modules import shared, devices, sd_models, errors, scripts
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
@ -93,6 +93,7 @@ class LoraOnDisk:
self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
self.alias = self.metadata.get('ss_output_name', self.name)
class LoraModule:
@ -165,8 +166,10 @@ def load_lora(name, filename):
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
@ -199,11 +202,11 @@ def load_loras(names, multipliers=None):
loaded_loras.clear()
loras_on_disk = [available_loras.get(name, None) for name in names]
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
if any([x is None for x in loras_on_disk]):
list_available_loras()
loras_on_disk = [available_loras.get(name, None) for name in names]
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
for i, name in enumerate(names):
lora = already_loaded.get(name, None)
@ -211,7 +214,11 @@ def load_loras(names, multipliers=None):
lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
lora = load_lora(name, lora_on_disk.filename)
try:
lora = load_lora(name, lora_on_disk.filename)
except Exception as e:
errors.display(e, f"loading Lora {lora_on_disk.filename}")
continue
if lora is None:
print(f"Couldn't find Lora with name {name}")
@ -228,6 +235,8 @@ def lora_calc_updown(lora, module, target):
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
@ -339,6 +348,7 @@ def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
def list_available_loras():
available_loras.clear()
available_lora_aliases.clear()
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
@ -352,11 +362,50 @@ def list_available_loras():
continue
name = os.path.splitext(os.path.basename(filename))[0]
entry = LoraOnDisk(name, filename)
available_loras[name] = LoraOnDisk(name, filename)
available_loras[name] = entry
available_lora_aliases[name] = entry
available_lora_aliases[entry.alias] = entry
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k, v in params.items():
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_lora_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
available_loras = {}
available_lora_aliases = {}
loaded_loras = []
list_available_loras()

View File

@ -49,8 +49,9 @@ torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
}))

View File

@ -21,7 +21,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
"preview": self.find_preview(path),
"description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"prompt": json.dumps(f"<lora:{lora_on_disk.alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
}

View File

@ -5,11 +5,15 @@ import traceback
import PIL.Image
import numpy as np
import torch
from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader
from scunet_model_arch import SCUNet as net
from modules.shared import opts
from modules import images
class UpscalerScuNET(modules.upscaler.Upscaler):
@ -42,28 +46,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers.append(scaler_data2)
self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file):
@staticmethod
@torch.no_grad()
def tiled_inference(img, model):
# test the image tile by tile
h, w = img.shape[2:]
tile = opts.SCUNET_tile
tile_overlap = opts.SCUNET_tile_overlap
if tile == 0:
return model(img)
device = devices.get_device_for('scunet')
assert tile % 8 == 0, "tile size should be a multiple of window_size"
sf = 1
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def do_upscale(self, img: PIL.Image.Image, selected_file):
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
tile = opts.SCUNET_tile
h, w = img.height, img.width
np_img = np.array(img)
np_img = np_img[:, :, ::-1] # RGB to BGR
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
if tile > h or tile > w:
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
_img[:, :, :h, :w] = torch_img # pad image
torch_img = _img
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output
torch.cuda.empty_cache()
return PIL.Image.fromarray(output, 'RGB')
output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB
return PIL.Image.fromarray((output * 255).astype(np.uint8))
def load_model(self, path: str):
device = devices.get_device_for('scunet')
@ -84,4 +138,3 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
model = model.to(device)
return model

View File

@ -1,103 +1,42 @@
// Stable Diffusion WebUI - Bracket checker
// Version 1.0
// By Hingashi no Florin/Bwin4L
// By Hingashi no Florin/Bwin4L & @akx
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(evt, textArea, counterElt) {
errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
function checkBrackets(textArea, counterElt) {
var counts = {};
(textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => {
counts[bracket] = (counts[bracket] || 0) + 1;
});
var errors = [];
openBracketRegExp = /\(/g;
closeBracketRegExp = /\)/g;
openSquareBracketRegExp = /\[/g;
closeSquareBracketRegExp = /\]/g;
openCurlyBracketRegExp = /\{/g;
closeCurlyBracketRegExp = /\}/g;
totalOpenBracketMatches = 0;
totalCloseBracketMatches = 0;
totalOpenSquareBracketMatches = 0;
totalCloseSquareBracketMatches = 0;
totalOpenCurlyBracketMatches = 0;
totalCloseCurlyBracketMatches = 0;
openBracketMatches = textArea.value.match(openBracketRegExp);
if(openBracketMatches) {
totalOpenBracketMatches = openBracketMatches.length;
}
closeBracketMatches = textArea.value.match(closeBracketRegExp);
if(closeBracketMatches) {
totalCloseBracketMatches = closeBracketMatches.length;
}
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
if(openSquareBracketMatches) {
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
}
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
if(closeSquareBracketMatches) {
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
}
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
if(openCurlyBracketMatches) {
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
}
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
if(closeCurlyBracketMatches) {
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
}
if(totalOpenBracketMatches != totalCloseBracketMatches) {
if(!counterElt.title.includes(errorStringParen)) {
counterElt.title += errorStringParen;
function checkPair(open, close, kind) {
if (counts[open] !== counts[close]) {
errors.push(
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
);
}
} else {
counterElt.title = counterElt.title.replace(errorStringParen, '');
}
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
if(!counterElt.title.includes(errorStringSquare)) {
counterElt.title += errorStringSquare;
}
} else {
counterElt.title = counterElt.title.replace(errorStringSquare, '');
}
checkPair('(', ')', 'round brackets');
checkPair('[', ']', 'square brackets');
checkPair('{', '}', 'curly brackets');
counterElt.title = errors.join('\n');
counterElt.classList.toggle('error', errors.length !== 0);
}
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
if(!counterElt.title.includes(errorStringCurly)) {
counterElt.title += errorStringCurly;
}
} else {
counterElt.title = counterElt.title.replace(errorStringCurly, '');
}
function setupBracketChecking(id_prompt, id_counter) {
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter)
if(counterElt.title != '') {
counterElt.classList.add('error');
} else {
counterElt.classList.remove('error');
if (textarea && counter) {
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
}
}
function setupBracketChecking(id_prompt, id_counter){
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter)
textarea.addEventListener("input", function(evt){
checkBrackets(evt, textarea, counter)
});
}
onUiLoaded(function(){
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
setupBracketChecking('img2img_prompt', 'img2img_token_counter')
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
})
onUiLoaded(function () {
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter');
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter');
setupBracketChecking('img2img_prompt', 'img2img_token_counter');
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter');
});

View File

@ -45,29 +45,24 @@ function dimensionChange(e, is_width, is_height){
var viewportOffset = targetElement.getBoundingClientRect();
viewportscale = Math.min( targetElement.clientWidth/targetElement.naturalWidth, targetElement.clientHeight/targetElement.naturalHeight )
var viewportscale = Math.min( targetElement.clientWidth/targetElement.naturalWidth, targetElement.clientHeight/targetElement.naturalHeight )
scaledx = targetElement.naturalWidth*viewportscale
scaledy = targetElement.naturalHeight*viewportscale
var scaledx = targetElement.naturalWidth*viewportscale
var scaledy = targetElement.naturalHeight*viewportscale
cleintRectTop = (viewportOffset.top+window.scrollY)
cleintRectLeft = (viewportOffset.left+window.scrollX)
cleintRectCentreY = cleintRectTop + (targetElement.clientHeight/2)
cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth/2)
var cleintRectTop = (viewportOffset.top+window.scrollY)
var cleintRectLeft = (viewportOffset.left+window.scrollX)
var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight/2)
var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth/2)
viewRectTop = cleintRectCentreY-(scaledy/2)
viewRectLeft = cleintRectCentreX-(scaledx/2)
arRectWidth = scaledx
arRectHeight = scaledy
var arscale = Math.min( scaledx/currentWidth, scaledy/currentHeight )
var arscaledx = currentWidth*arscale
var arscaledy = currentHeight*arscale
arscale = Math.min( arRectWidth/currentWidth, arRectHeight/currentHeight )
arscaledx = currentWidth*arscale
arscaledy = currentHeight*arscale
arRectTop = cleintRectCentreY-(arscaledy/2)
arRectLeft = cleintRectCentreX-(arscaledx/2)
arRectWidth = arscaledx
arRectHeight = arscaledy
var arRectTop = cleintRectCentreY-(arscaledy/2)
var arRectLeft = cleintRectCentreX-(arscaledx/2)
var arRectWidth = arscaledx
var arRectHeight = arscaledy
arPreviewRect.style.top = arRectTop+'px';
arPreviewRect.style.left = arRectLeft+'px';

View File

@ -4,7 +4,7 @@ contextMenuInit = function(){
let menuSpecs = new Map();
const uid = function(){
return Date.now().toString(36) + Math.random().toString(36).substr(2);
return Date.now().toString(36) + Math.random().toString(36).substring(2);
}
function showContextMenu(event,element,menuEntries){
@ -16,8 +16,7 @@ contextMenuInit = function(){
oldMenu.remove()
}
let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton)
let baseStyle = window.getComputedStyle(uiCurrentTab)
const contextMenu = document.createElement('nav')
contextMenu.id = "context-menu"
@ -36,7 +35,7 @@ contextMenuInit = function(){
menuEntries.forEach(function(entry){
let contextMenuEntry = document.createElement('a')
contextMenuEntry.innerHTML = entry['name']
contextMenuEntry.addEventListener("click", function(e) {
contextMenuEntry.addEventListener("click", function() {
entry['func']();
})
contextMenuList.append(contextMenuEntry);
@ -63,7 +62,7 @@ contextMenuInit = function(){
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
currentItems = menuSpecs.get(targetElementSelector)
var currentItems = menuSpecs.get(targetElementSelector)
if(!currentItems){
currentItems = []
@ -79,7 +78,7 @@ contextMenuInit = function(){
}
function removeContextMenuOption(uid){
menuSpecs.forEach(function(v,k) {
menuSpecs.forEach(function(v) {
let index = -1
v.forEach(function(e,ei){if(e['id']==uid){index=ei}})
if(index>=0){
@ -112,7 +111,6 @@ contextMenuInit = function(){
if(e.composedPath()[0].matches(k)){
showContextMenu(e,e.composedPath()[0],v)
e.preventDefault()
return
}
})
});
@ -161,14 +159,6 @@ addContextMenuEventListener = initResponse[2];
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
}
)
})();
//End example Context Menu Items

View File

@ -17,7 +17,7 @@ function keyupEditAttention(event){
// Find opening parenthesis around current cursor
const before = text.substring(0, selectionStart);
let beforeParen = before.lastIndexOf(OPEN);
if (beforeParen == -1) return false;
if (beforeParen == -1) return false;
let beforeParenClose = before.lastIndexOf(CLOSE);
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
@ -27,7 +27,7 @@ function keyupEditAttention(event){
// Find closing parenthesis around current cursor
const after = text.substring(selectionStart);
let afterParen = after.indexOf(CLOSE);
if (afterParen == -1) return false;
if (afterParen == -1) return false;
let afterParenOpen = after.indexOf(OPEN);
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(CLOSE, afterParen + 1);
@ -44,15 +44,33 @@ function keyupEditAttention(event){
return true;
}
// If the user hasn't selected anything, let's select their current parenthesis block
if(! selectCurrentParenthesisBlock('<', '>')){
selectCurrentParenthesisBlock('(', ')')
function selectCurrentWord(){
if (selectionStart !== selectionEnd) return false;
const delimiters = opts.keyedit_delimiters + " \r\n\t";
// seek backward until to find beggining
while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) {
selectionStart--;
}
// seek forward to find end
while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) {
selectionEnd++;
}
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
// If the user hasn't selected anything, let's select their current parenthesis block or word
if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) {
selectCurrentWord();
}
event.preventDefault();
closeCharacter = ')'
delta = opts.keyedit_precision_attention
var closeCharacter = ')'
var delta = opts.keyedit_precision_attention
if (selectionStart > 0 && text[selectionStart - 1] == '<'){
closeCharacter = '>'
@ -73,15 +91,21 @@ function keyupEditAttention(event){
selectionEnd += 1;
}
end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1;
weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end));
var end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1;
var weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
weight += isPlus ? delta : -delta;
weight = parseFloat(weight.toPrecision(12));
if(String(weight).length == 1) weight += ".0"
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
if (closeCharacter == ')' && weight == 1) {
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5);
selectionStart--;
selectionEnd--;
} else {
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
}
target.focus();
target.value = text;

View File

@ -1,14 +1,14 @@
function extensions_apply(_, _, disable_all){
function extensions_apply(_disabled_list, _update_list, disable_all){
var disable = []
var update = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
disable.push(x.name.substring(7))
if(x.name.startsWith("update_") && x.checked)
update.push(x.name.substr(7))
update.push(x.name.substring(7))
})
restart_reload()
@ -16,12 +16,12 @@ function extensions_apply(_, _, disable_all){
return [JSON.stringify(disable), JSON.stringify(update), disable_all]
}
function extensions_check(_, _){
function extensions_check(){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
disable.push(x.name.substring(7))
})
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
@ -41,9 +41,31 @@ function install_extension_from_index(button, url){
button.disabled = "disabled"
button.value = "Installing..."
textarea = gradioApp().querySelector('#extension_to_install textarea')
var textarea = gradioApp().querySelector('#extension_to_install textarea')
textarea.value = url
updateInput(textarea)
gradioApp().querySelector('#install_extension_button').click()
}
function config_state_confirm_restore(_, config_state_name, config_restore_type) {
if (config_state_name == "Current") {
return [false, config_state_name, config_restore_type];
}
let restored = "";
if (config_restore_type == "extensions") {
restored = "all saved extension versions";
} else if (config_restore_type == "webui") {
restored = "the webui version";
} else {
restored = "the webui version and all saved extension versions";
}
let confirmed = confirm("Are you sure you want to restore from this state?\nThis will reset " + restored + ".");
if (confirmed) {
restart_reload();
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
x.innerHTML = "Loading..."
})
}
return [confirmed, config_state_name, config_restore_type];
}

View File

@ -10,11 +10,11 @@ function setupExtraNetworksForTab(tabname){
tabs.appendChild(search)
tabs.appendChild(refresh)
search.addEventListener("input", function(evt){
searchTerm = search.value.toLowerCase()
search.addEventListener("input", function(){
var searchTerm = search.value.toLowerCase()
gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){
text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase()
var text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase()
elem.style.display = text.indexOf(searchTerm) == -1 ? "none" : ""
})
});
@ -55,7 +55,7 @@ function tryToRemoveExtraNetworkFromPrompt(textarea, text){
var partToSearch = m[1]
var replaced = false
var newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, index){
var newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found){
m = found.match(re_extranet);
if(m[1] == partToSearch){
replaced = true;
@ -96,9 +96,9 @@ function saveCardPreview(event, tabname, filename){
}
function extraNetworksSearchButton(tabs_id, event){
searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea')
button = event.target
text = button.classList.contains("search-all") ? "" : button.textContent.trim()
var searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea')
var button = event.target
var text = button.classList.contains("search-all") ? "" : button.textContent.trim()
searchTextarea.value = text
updateInput(searchTextarea)
@ -133,7 +133,7 @@ function popup(contents){
}
function extraNetworksShowMetadata(text){
elem = document.createElement('pre')
var elem = document.createElement('pre')
elem.classList.add('popup-metadata');
elem.textContent = text;
@ -165,7 +165,7 @@ function requestGet(url, data, handler, errorHandler){
}
function extraNetworksRequestMetadata(event, extraPage, cardName){
showError = function(){ extraNetworksShowMetadata("there was an error getting metadata"); }
var showError = function(){ extraNetworksShowMetadata("there was an error getting metadata"); }
requestGet("./sd_extra_networks/metadata", {"page": extraPage, "item": cardName}, function(data){
if(data && data.metadata){

View File

@ -16,14 +16,14 @@ onUiUpdate(function(){
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText
if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img'))
gradioApp().getElementById(selectedTab+"_generation_info_button")?.click()
});
});
function attachGalleryListeners(tab_name) {
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
var gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
gallery?.addEventListener('keydown', (e) => {
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow

View File

@ -22,6 +22,7 @@ titles = {
"\u{1f4cb}": "Apply selected styles to current prompt",
"\u{1f4d2}": "Paste available values into the field",
"\u{1f3b4}": "Show/hide extra networks",
"\u{1f300}": "Restore progress",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
@ -65,8 +66,8 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg],[prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [denoising], [clip_skip], [batch_number], [generation_number], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [denoising], [clip_skip], [batch_number], [generation_number], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
"Loopback": "Performs img2img processing multiple times. Output images are used as input for the next loop.",
@ -85,7 +86,6 @@ titles = {
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
"Filename join string": "This string will be used to join split words into a single line if the option above is enabled.",
@ -111,15 +111,18 @@ titles = {
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited."
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
}
onUiUpdate(function(){
gradioApp().querySelectorAll('span, button, select, p').forEach(function(span){
tooltip = localization[titles[span.textContent]] || titles[span.textContent];
if (span.title) return; // already has a title
if(!tooltip){
let tooltip = localization[titles[span.textContent]] || titles[span.textContent];
if(!tooltip){
tooltip = localization[titles[span.value]] || titles[span.value];
}

View File

@ -1,16 +1,12 @@
function setInactive(elem, inactive){
if(inactive){
elem.classList.add('inactive')
} else{
elem.classList.remove('inactive')
}
}
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
function setInactive(elem, inactive){
elem.classList.toggle('inactive', !!inactive)
}
var hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
var hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
var hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""

View File

@ -2,11 +2,10 @@
* temporary fix for https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/668
* @see https://github.com/gradio-app/gradio/issues/1721
*/
window.addEventListener( 'resize', () => imageMaskResize());
function imageMaskResize() {
const canvases = gradioApp().querySelectorAll('#img2maskimg .touch-none canvas');
if ( ! canvases.length ) {
canvases_fixed = false;
canvases_fixed = false; // TODO: this is unused..?
window.removeEventListener( 'resize', imageMaskResize );
return;
}
@ -15,7 +14,7 @@ function imageMaskResize() {
const previewImage = wrapper.previousElementSibling;
if ( ! previewImage.complete ) {
previewImage.addEventListener( 'load', () => imageMaskResize());
previewImage.addEventListener( 'load', imageMaskResize);
return;
}
@ -24,7 +23,6 @@ function imageMaskResize() {
const nw = previewImage.naturalWidth;
const nh = previewImage.naturalHeight;
const portrait = nh > nw;
const factor = portrait;
const wW = Math.min(w, portrait ? h/nh*nw : w/nw*nw);
const wH = Math.min(h, portrait ? h/nh*nh : w/nw*nh);
@ -40,6 +38,7 @@ function imageMaskResize() {
c.style.maxHeight = '100%';
c.style.objectFit = 'contain';
});
}
}
onUiUpdate(() => imageMaskResize());
onUiUpdate(imageMaskResize);
window.addEventListener( 'resize', imageMaskResize);

View File

@ -1,7 +1,6 @@
window.onload = (function(){
window.addEventListener('drop', e => {
const target = e.composedPath()[0];
const idx = selected_gallery_index();
if (target.placeholder.indexOf("Prompt") == -1) return;
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";

View File

@ -57,7 +57,7 @@ function modalImageSwitch(offset) {
})
if (result != -1) {
nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
var nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
nextButton.click()
const modalImage = gradioApp().getElementById("modalImage");
const modal = gradioApp().getElementById("lightboxModal");
@ -144,15 +144,11 @@ function setupImageForLightbox(e) {
}
function modalZoomSet(modalImage, enable) {
if (enable) {
modalImage.classList.add('modalImageFullscreen');
} else {
modalImage.classList.remove('modalImageFullscreen');
}
if(modalImage) modalImage.classList.toggle('modalImageFullscreen', !!enable);
}
function modalZoomToggle(event) {
modalImage = gradioApp().getElementById("modalImage");
var modalImage = gradioApp().getElementById("modalImage");
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
event.stopPropagation()
}
@ -179,7 +175,7 @@ function galleryImageHandler(e) {
}
onUiUpdate(function() {
fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img')
var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img')
if (fullImg_preview != null) {
fullImg_preview.forEach(setupImageForLightbox);
}
@ -251,8 +247,11 @@ document.addEventListener("DOMContentLoaded", function() {
modal.appendChild(modalNext)
gradioApp().appendChild(modal)
try {
gradioApp().appendChild(modal);
} catch (e) {
gradioApp().body.appendChild(modal);
}
document.body.appendChild(modal);

View File

@ -0,0 +1,57 @@
window.addEventListener('gamepadconnected', (e) => {
const index = e.gamepad.index;
let isWaiting = false;
setInterval(async () => {
if (!opts.js_modal_lightbox_gamepad || isWaiting) return;
const gamepad = navigator.getGamepads()[index];
const xValue = gamepad.axes[0];
if (xValue <= -0.3) {
modalPrevImage(e);
isWaiting = true;
} else if (xValue >= 0.3) {
modalNextImage(e);
isWaiting = true;
}
if (isWaiting) {
await sleepUntil(() => {
const xValue = navigator.getGamepads()[index].axes[0]
if (xValue < 0.3 && xValue > -0.3) {
return true;
}
}, opts.js_modal_lightbox_gamepad_repeat);
isWaiting = false;
}
}, 10);
});
/*
Primarily for vr controller type pointer devices.
I use the wheel event because there's currently no way to do it properly with web xr.
*/
let isScrolling = false;
window.addEventListener('wheel', (e) => {
if (!opts.js_modal_lightbox_gamepad || isScrolling) return;
isScrolling = true;
if (e.deltaX <= -0.6) {
modalPrevImage(e);
} else if (e.deltaX >= 0.6) {
modalNextImage(e);
}
setTimeout(() => {
isScrolling = false;
}, opts.js_modal_lightbox_gamepad_repeat);
});
function sleepUntil(f, timeout) {
return new Promise((resolve) => {
const timeStart = new Date();
const wait = setInterval(function() {
if (f() || new Date() - timeStart > timeout) {
clearInterval(wait);
resolve();
}
}, 20);
});
}

View File

@ -25,6 +25,10 @@ re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u
original_lines = {}
translated_lines = {}
function hasLocalization() {
return window.localization && Object.keys(window.localization).length > 0;
}
function textNodesUnder(el){
var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false);
while(n=walk.nextNode()) a.push(n);
@ -35,11 +39,11 @@ function canBeTranslated(node, text){
if(! text) return false;
if(! node.parentElement) return false;
parentType = node.parentElement.nodeName
var parentType = node.parentElement.nodeName
if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false;
if (parentType=='OPTION' || parentType=='SPAN'){
pnode = node
var pnode = node
for(var level=0; level<4; level++){
pnode = pnode.parentElement
if(! pnode) break;
@ -69,7 +73,7 @@ function getTranslation(text){
}
function processTextNode(node){
text = node.textContent.trim()
var text = node.textContent.trim()
if(! canBeTranslated(node, text)) return
@ -105,7 +109,7 @@ function processNode(node){
}
function dumpTranslations(){
dumped = {}
var dumped = {}
if (localization.rtl) {
dumped.rtl = true
}
@ -119,39 +123,8 @@ function dumpTranslations(){
return dumped
}
onUiUpdate(function(m){
m.forEach(function(mutation){
mutation.addedNodes.forEach(function(node){
processNode(node)
})
});
})
document.addEventListener("DOMContentLoaded", function() {
processNode(gradioApp())
if (localization.rtl) { // if the language is from right to left,
(new MutationObserver((mutations, observer) => { // wait for the style to load
mutations.forEach(mutation => {
mutation.addedNodes.forEach(node => {
if (node.tagName === 'STYLE') {
observer.disconnect();
for (const x of node.sheet.rules) { // find all rtl media rules
if (Array.from(x.media || []).includes('rtl')) {
x.media.appendMedium('all'); // enable them
}
}
}
})
});
})).observe(gradioApp(), { childList: true });
}
})
function download_localization() {
text = JSON.stringify(dumpTranslations(), null, 4)
var text = JSON.stringify(dumpTranslations(), null, 4)
var element = document.createElement('a');
element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text));
@ -163,3 +136,36 @@ function download_localization() {
document.body.removeChild(element);
}
if(hasLocalization()) {
onUiUpdate(function (m) {
m.forEach(function (mutation) {
mutation.addedNodes.forEach(function (node) {
processNode(node)
})
});
})
document.addEventListener("DOMContentLoaded", function () {
processNode(gradioApp())
if (localization.rtl) { // if the language is from right to left,
(new MutationObserver((mutations, observer) => { // wait for the style to load
mutations.forEach(mutation => {
mutation.addedNodes.forEach(node => {
if (node.tagName === 'STYLE') {
observer.disconnect();
for (const x of node.sheet.rules) { // find all rtl media rules
if (Array.from(x.media || []).includes('rtl')) {
x.media.appendMedium('all'); // enable them
}
}
}
})
});
})).observe(gradioApp(), { childList: true });
}
})
}

View File

@ -2,15 +2,15 @@
let lastHeadImg = null;
notificationButton = null
let notificationButton = null;
onUiUpdate(function(){
if(notificationButton == null){
notificationButton = gradioApp().getElementById('request_notifications')
if(notificationButton != null){
notificationButton.addEventListener('click', function (evt) {
Notification.requestPermission();
notificationButton.addEventListener('click', () => {
void Notification.requestPermission();
},true);
}
}

View File

@ -1,16 +1,15 @@
// code related to showing and updating progressbar shown as the image is being made
function rememberGallerySelection(id_gallery){
function rememberGallerySelection(){
}
function getGallerySelectedIndex(id_gallery){
function getGallerySelectedIndex(){
}
function request(url, data, handler, errorHandler){
var xhr = new XMLHttpRequest();
var url = url;
xhr.open("POST", url, true);
xhr.setRequestHeader("Content-Type", "application/json");
xhr.onreadystatechange = function () {
@ -66,7 +65,7 @@ function randomId(){
// starts sending progress requests to "/internal/progress" uri, creating progressbar above progressbarContainer element and
// preview inside gallery element. Cleans up all created stuff when the task is over and calls atEnd.
// calls onProgress every time there is a progress update
function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress){
function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress, inactivityTimeout=40){
var dateStart = new Date()
var wasEverActive = false
var parentProgressbar = progressbarContainer.parentNode
@ -107,7 +106,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
divProgress.style.width = rect.width + "px";
}
progressText = ""
let progressText = ""
divInner.style.width = ((res.progress || 0) * 100.0) + '%'
divInner.style.background = res.progress ? "" : "transparent"
@ -138,7 +137,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
return
}
if(elapsedFromStart > 5 && !res.queued && !res.active){
if(elapsedFromStart > inactivityTimeout && !res.queued && !res.active){
removeProgressBar()
return
}

View File

@ -1,7 +1,7 @@
// various functions for interaction with ui.py not large enough to warrant putting them in separate files
function set_theme(theme){
gradioURL = window.location.href
var gradioURL = window.location.href
if (!gradioURL.includes('?__theme=')) {
window.location.replace(gradioURL + '?__theme=' + theme);
}
@ -47,7 +47,7 @@ function extract_image_from_gallery(gallery){
return [gallery[0]];
}
index = selected_gallery_index()
var index = selected_gallery_index()
if (index < 0 || index >= gallery.length){
// Use the first image in the gallery as the default
@ -58,7 +58,7 @@ function extract_image_from_gallery(gallery){
}
function args_to_array(args){
res = []
var res = []
for(var i=0;i<args.length;i++){
res.push(args[i])
}
@ -138,7 +138,7 @@ function get_img2img_tab_index() {
}
function create_submit_args(args){
res = []
var res = []
for(var i=0;i<args.length;i++){
res.push(args[i])
}
@ -159,14 +159,24 @@ function showSubmitButtons(tabname, show){
gradioApp().getElementById(tabname+'_skip').style.display = show ? "none" : "block"
}
function showRestoreProgressButton(tabname, show){
var button = gradioApp().getElementById(tabname + "_restore_progress")
if(! button) return
button.style.display = show ? "flex" : "none"
}
function submit(){
rememberGallerySelection('txt2img_gallery')
showSubmitButtons('txt2img', false)
var id = randomId()
localStorage.setItem("txt2img_task_id", id);
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function(){
showSubmitButtons('txt2img', true)
localStorage.removeItem("txt2img_task_id")
showRestoreProgressButton('txt2img', false)
})
var res = create_submit_args(arguments)
@ -181,8 +191,12 @@ function submit_img2img(){
showSubmitButtons('img2img', false)
var id = randomId()
localStorage.setItem("img2img_task_id", id);
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function(){
showSubmitButtons('img2img', true)
localStorage.removeItem("img2img_task_id")
showRestoreProgressButton('img2img', false)
})
var res = create_submit_args(arguments)
@ -193,6 +207,42 @@ function submit_img2img(){
return res
}
function restoreProgressTxt2img(){
showRestoreProgressButton("txt2img", false)
var id = localStorage.getItem("txt2img_task_id")
id = localStorage.getItem("txt2img_task_id")
if(id) {
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function(){
showSubmitButtons('txt2img', true)
}, null, 0)
}
return id
}
function restoreProgressImg2img(){
showRestoreProgressButton("img2img", false)
var id = localStorage.getItem("img2img_task_id")
if(id) {
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function(){
showSubmitButtons('img2img', true)
}, null, 0)
}
return id
}
onUiLoaded(function () {
showRestoreProgressButton('txt2img', localStorage.getItem("txt2img_task_id"))
showRestoreProgressButton('img2img', localStorage.getItem("img2img_task_id"))
});
function modelmerger(){
var id = randomId()
requestProgress(id, gradioApp().getElementById('modelmerger_results_panel'), null, function(){})
@ -204,7 +254,7 @@ function modelmerger(){
function ask_for_style_name(_, prompt_text, negative_prompt_text) {
name_ = prompt('Style name:')
var name_ = prompt('Style name:')
return [name_, prompt_text, negative_prompt_text]
}
@ -239,11 +289,11 @@ function recalculate_prompts_img2img(){
}
opts = {}
var opts = {}
onUiUpdate(function(){
if(Object.keys(opts).length != 0) return;
json_elem = gradioApp().getElementById('settings_json')
var json_elem = gradioApp().getElementById('settings_json')
if(json_elem == null) return;
var textarea = json_elem.querySelector('textarea')
@ -292,8 +342,8 @@ onUiUpdate(function(){
registerTextarea('img2img_prompt', 'img2img_token_counter', 'img2img_token_button')
registerTextarea('img2img_neg_prompt', 'img2img_negative_token_counter', 'img2img_negative_token_button')
show_all_pages = gradioApp().getElementById('settings_show_all_pages')
settings_tabs = gradioApp().querySelector('#settings div')
var show_all_pages = gradioApp().getElementById('settings_show_all_pages')
var settings_tabs = gradioApp().querySelector('#settings div')
if(show_all_pages && settings_tabs){
settings_tabs.appendChild(show_all_pages)
show_all_pages.onclick = function(){
@ -305,9 +355,9 @@ onUiUpdate(function(){
})
onOptionsChanged(function(){
elem = gradioApp().getElementById('sd_checkpoint_hash')
sd_checkpoint_hash = opts.sd_checkpoint_hash || ""
shorthash = sd_checkpoint_hash.substr(0,10)
var elem = gradioApp().getElementById('sd_checkpoint_hash')
var sd_checkpoint_hash = opts.sd_checkpoint_hash || ""
var shorthash = sd_checkpoint_hash.substring(0,10)
if(elem && elem.textContent != shorthash){
elem.textContent = shorthash
@ -361,3 +411,19 @@ function selectCheckpoint(name){
desiredCheckpointName = name;
gradioApp().getElementById('change_checkpoint').click()
}
function currentImg2imgSourceResolution(_, _, scaleBy){
var img = gradioApp().querySelector('#mode_img2img > div[style="display: block;"] img')
return img ? [img.naturalWidth, img.naturalHeight, scaleBy] : [0, 0, scaleBy]
}
function updateImg2imgResizeToTextAfterChangingImage(){
// At the time this is called from gradio, the image has no yet been replaced.
// There may be a better solution, but this is simple and straightforward so I'm going with it.
setTimeout(function() {
gradioApp().getElementById('img2img_update_resize_to').click()
}, 500);
return []
}

View File

@ -19,7 +19,6 @@ python = sys.executable
git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL', "")
stored_commit_hash = None
skip_install = False
dir_repos = "repositories"
if 'GRADIO_ANALYTICS_ENABLED' not in os.environ:
@ -49,7 +48,7 @@ or any other error regarding unsuccessful package (library) installation,
please downgrade (or upgrade) to the latest version of 3.10 Python
and delete current Python and "venv" folder in WebUI's directory.
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3109/
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3106/
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
@ -121,12 +120,12 @@ def run_python(code, desc=None, errdesc=None):
return run(f'"{python}" -c "{code}"', desc, errdesc)
def run_pip(args, desc=None):
if skip_install:
def run_pip(command, desc=None, live=False):
if args.skip_install:
return
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
return run(f'"{python}" -m pip {command} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}", live=live)
def check_run_python(code):
@ -223,12 +222,10 @@ def run_extensions_installers(settings_file):
def prepare_environment():
global skip_install
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==2.0.0 torchvision==0.15.1 --extra-index-url https://download.pytorch.org/whl/cu118")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.17')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
@ -271,7 +268,7 @@ def prepare_environment():
if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers", live=True)
else:
print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
@ -296,7 +293,7 @@ def prepare_environment():
if not os.path.isfile(requirements_file):
requirements_file = os.path.join(script_path, requirements_file)
run_pip(f"install -r \"{requirements_file}\"", "requirements for Web UI")
run_pip(f"install -r \"{requirements_file}\"", "requirements")
run_extensions_installers(settings_file=args.ui_settings_file)

View File

@ -6,7 +6,6 @@ import uvicorn
import gradio as gr
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
from fastapi import APIRouter, Depends, FastAPI, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import HTTPException
@ -131,8 +130,8 @@ def api_middleware(app: FastAPI):
"body": vars(e).get('body', ''),
"errors": str(e),
}
print(f"API error: {request.method}: {request.url} {err}")
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
print(f"API error: {request.method}: {request.url} {err}")
if rich_available:
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else:
@ -272,7 +271,9 @@ class Api:
raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params")
# always on script with no arg should always run so you don't really need to add them to the requests
if "args" in request.alwayson_scripts[alwayson_script_name]:
script_args[alwayson_script.args_from:alwayson_script.args_to] = request.alwayson_scripts[alwayson_script_name]["args"]
# min between arg length in scriptrunner and arg length in the request
for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
return script_args
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
@ -395,16 +396,11 @@ class Api:
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
reqDict.pop('imageList')
image_list = reqDict.pop('imageList', [])
image_folder = [decode_base64_to_image(x.data) for x in image_list]
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])

View File

@ -35,6 +35,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
try:
res = func(*args, **kwargs)
progress.record_results(id_task, res)
finally:
progress.finish_task(id_task)

View File

@ -95,9 +95,11 @@ parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--disable-tls-verify", action="store_false", help="When passed, enables the use of self-signed certificates.", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
parser.add_argument("--gradio-queue", action='store_true', help="does not do anything", default=True)
parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gradio queue; causes the webpage to use http requests instead of websockets; was the defaul in earlier versions")
parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')

200
modules/config_states.py Normal file
View File

@ -0,0 +1,200 @@
"""
Supports saving and restoring webui and extensions from a known working set of commits
"""
import os
import sys
import traceback
import json
import time
import tqdm
from datetime import datetime
from collections import OrderedDict
import git
from modules import shared, extensions
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path, config_states_dir
all_config_states = OrderedDict()
def list_config_states():
global all_config_states
all_config_states.clear()
os.makedirs(config_states_dir, exist_ok=True)
config_states = []
for filename in os.listdir(config_states_dir):
if filename.endswith(".json"):
path = os.path.join(config_states_dir, filename)
with open(path, "r", encoding="utf-8") as f:
j = json.load(f)
j["filepath"] = path
config_states.append(j)
config_states = list(sorted(config_states, key=lambda cs: cs["created_at"], reverse=True))
for cs in config_states:
timestamp = time.asctime(time.gmtime(cs["created_at"]))
name = cs.get("name", "Config")
full_name = f"{name}: {timestamp}"
all_config_states[full_name] = cs
return all_config_states
def get_webui_config():
webui_repo = None
try:
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
webui_remote = None
webui_commit_hash = None
webui_commit_date = None
webui_branch = None
if webui_repo and not webui_repo.bare:
try:
webui_remote = next(webui_repo.remote().urls, None)
head = webui_repo.head.commit
webui_commit_date = webui_repo.head.commit.committed_date
webui_commit_hash = head.hexsha
webui_branch = webui_repo.active_branch.name
except Exception:
webui_remote = None
return {
"remote": webui_remote,
"commit_hash": webui_commit_hash,
"commit_date": webui_commit_date,
"branch": webui_branch,
}
def get_extension_config():
ext_config = {}
for ext in extensions.extensions:
entry = {
"name": ext.name,
"path": ext.path,
"enabled": ext.enabled,
"is_builtin": ext.is_builtin,
"remote": ext.remote,
"commit_hash": ext.commit_hash,
"commit_date": ext.commit_date,
"branch": ext.branch,
"have_info_from_repo": ext.have_info_from_repo
}
ext_config[ext.name] = entry
return ext_config
def get_config():
creation_time = datetime.now().timestamp()
webui_config = get_webui_config()
ext_config = get_extension_config()
return {
"created_at": creation_time,
"webui": webui_config,
"extensions": ext_config
}
def restore_webui_config(config):
print("* Restoring webui state...")
if "webui" not in config:
print("Error: No webui data saved to config")
return
webui_config = config["webui"]
if "commit_hash" not in webui_config:
print("Error: No commit saved to webui config")
return
webui_commit_hash = webui_config.get("commit_hash", None)
webui_repo = None
try:
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return
try:
webui_repo.git.fetch(all=True)
webui_repo.git.reset(webui_commit_hash, hard=True)
print(f"* Restored webui to commit {webui_commit_hash}.")
except Exception:
print(f"Error restoring webui to commit {webui_commit_hash}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def restore_extension_config(config):
print("* Restoring extension state...")
if "extensions" not in config:
print("Error: No extension data saved to config")
return
ext_config = config["extensions"]
results = []
disabled = []
for ext in tqdm.tqdm(extensions.extensions):
if ext.is_builtin:
continue
ext.read_info_from_repo()
current_commit = ext.commit_hash
if ext.name not in ext_config:
ext.disabled = True
disabled.append(ext.name)
results.append((ext, current_commit[:8], False, "Saved extension state not found in config, marking as disabled"))
continue
entry = ext_config[ext.name]
if "commit_hash" in entry and entry["commit_hash"]:
try:
ext.fetch_and_reset_hard(entry["commit_hash"])
ext.read_info_from_repo()
if current_commit != entry["commit_hash"]:
results.append((ext, current_commit[:8], True, entry["commit_hash"][:8]))
except Exception as ex:
results.append((ext, current_commit[:8], False, ex))
else:
results.append((ext, current_commit[:8], False, "No commit hash found in config"))
if not entry.get("enabled", False):
ext.disabled = True
disabled.append(ext.name)
else:
ext.disabled = False
shared.opts.disabled_extensions = disabled
shared.opts.save(shared.config_filename)
print("* Finished restoring extensions. Results:")
for ext, prev_commit, success, result in results:
if success:
print(f" + {ext.name}: {prev_commit} -> {result}")
else:
print(f" ! {ext.name}: FAILURE ({result})")

View File

@ -92,14 +92,18 @@ def cond_cast_float(input):
def randn(seed, shape):
from modules.shared import opts
torch.manual_seed(seed)
if device.type == 'mps':
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
if device.type == 'mps':
from modules.shared import opts
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)

View File

@ -3,10 +3,11 @@ import sys
import traceback
import time
from datetime import datetime
import git
from modules import shared
from modules.paths_internal import extensions_dir, extensions_builtin_dir
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path
extensions = []
@ -31,12 +32,15 @@ class Extension:
self.status = ''
self.can_update = False
self.is_builtin = is_builtin
self.commit_hash = ''
self.commit_date = None
self.version = ''
self.branch = None
self.remote = None
self.have_info_from_repo = False
def read_info_from_repo(self):
if self.have_info_from_repo:
if self.is_builtin or self.have_info_from_repo:
return
self.have_info_from_repo = True
@ -56,10 +60,15 @@ class Extension:
self.status = 'unknown'
self.remote = next(repo.remote().urls, None)
head = repo.head.commit
ts = time.asctime(time.gmtime(repo.head.commit.committed_date))
self.version = f'{head.hexsha[:8]} ({ts})'
self.commit_date = repo.head.commit.committed_date
ts = time.asctime(time.gmtime(self.commit_date))
if repo.active_branch:
self.branch = repo.active_branch.name
self.commit_hash = head.hexsha
self.version = f'{self.commit_hash[:8]} ({ts})'
except Exception:
except Exception as ex:
print(f"Failed reading extension data from Git repository ({self.name}): {ex}", file=sys.stderr)
self.remote = None
def list_files(self, subdir, extension):
@ -82,18 +91,30 @@ class Extension:
for fetch in repo.remote().fetch(dry_run=True):
if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True
self.status = "behind"
self.status = "new commits"
return
try:
origin = repo.rev_parse('origin')
if repo.head.commit != origin:
self.can_update = True
self.status = "behind HEAD"
return
except Exception:
self.can_update = False
self.status = "unknown (remote error)"
return
self.can_update = False
self.status = "latest"
def fetch_and_reset_hard(self):
def fetch_and_reset_hard(self, commit='origin'):
repo = git.Repo(self.path)
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch(all=True)
repo.git.reset('origin', hard=True)
repo.git.reset(commit, hard=True)
self.have_info_from_repo = False
def list_extensions():

View File

@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))

View File

@ -1,6 +1,7 @@
import os
import re
import shutil
import json
import torch
@ -71,7 +72,7 @@ def to_half(tensor, enable):
return tensor
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
shared.state.begin()
shared.state.job = 'model-merge'
@ -241,13 +242,54 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
shared.state.textinfo = "Saving"
print(f"Saving to {output_modelname}...")
metadata = {"format": "pt", "sd_merge_models": {}, "sd_merge_recipe": None}
if save_metadata:
merge_recipe = {
"type": "webui", # indicate this model was merged with webui's built-in merger
"primary_model_hash": primary_model_info.sha256,
"secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
"tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
"interp_method": interp_method,
"multiplier": multiplier,
"save_as_half": save_as_half,
"custom_name": custom_name,
"config_source": config_source,
"bake_in_vae": bake_in_vae,
"discard_weights": discard_weights,
"is_inpainting": result_is_inpainting_model,
"is_instruct_pix2pix": result_is_instruct_pix2pix_model
}
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
def add_model_metadata(checkpoint_info):
checkpoint_info.calculate_shorthash()
metadata["sd_merge_models"][checkpoint_info.sha256] = {
"name": checkpoint_info.name,
"legacy_hash": checkpoint_info.hash,
"sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
}
metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {}))
add_model_metadata(primary_model_info)
if secondary_model_info:
add_model_metadata(secondary_model_info)
if tertiary_model_info:
add_model_metadata(tertiary_model_info)
metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"])
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
else:
torch.save(theta_0, output_modelname)
sd_models.list_models()
created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
if created_model:
created_model.calculate_shorthash()
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)

View File

@ -284,6 +284,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
restore_old_hires_fix_params(res)
# Missing RNG means the default was set, which is GPU RNG
if "RNG" not in res:
res["RNG"] = "GPU"
return res
@ -304,6 +308,8 @@ infotext_to_setting_name_mapping = [
('UniPC skip type', 'uni_pc_skip_type'),
('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'),
('RNG', 'randn_source'),
('NGMS', 's_min_uncond'),
]

View File

@ -318,6 +318,7 @@ re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128
NOTHING_AND_SKIP_PREVIOUS_TEXT = object()
def sanitize_filename_part(text, replace_spaces=True):
@ -352,6 +353,11 @@ class FilenameGenerator:
'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(),
'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.batch_index + 1,
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
}
default_time_format = '%Y%m%d%H%M%S'
@ -361,6 +367,22 @@ class FilenameGenerator:
self.prompt = prompt
self.image = image
def hasprompt(self, *args):
lower = self.prompt.lower()
if self.p is None or self.prompt is None:
return None
outres = ""
for arg in args:
if arg != "":
division = arg.split("|")
expected = division[0].lower()
default = division[1] if len(division) > 1 else ""
if lower.find(expected) >= 0:
outres = f'{outres}{expected}'
else:
outres = outres if default == "" else f'{outres}{default}'
return sanitize_filename_part(outres)
def prompt_no_style(self):
if self.p is None or self.prompt is None:
return None
@ -403,9 +425,9 @@ class FilenameGenerator:
for m in re_pattern.finditer(x):
text, pattern = m.groups()
res += text
if pattern is None:
res += text
continue
pattern_args = []
@ -426,11 +448,13 @@ class FilenameGenerator:
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if replacement is not None:
res += str(replacement)
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
continue
elif replacement is not None:
res += text + str(replacement)
continue
res += f'[{pattern}]'
res += f'{text}[{pattern}]'
return res

View File

@ -4,7 +4,7 @@ import sys
import traceback
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
from modules import devices, sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
@ -46,7 +46,10 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
if state.interrupted:
break
img = Image.open(image)
try:
img = Image.open(image)
except UnidentifiedImageError:
continue
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
@ -78,7 +81,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
processed_image.save(os.path.join(output_dir, filename))
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
@ -114,6 +117,12 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if image is not None:
image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1:
assert image, "Can't scale by because no image is selected"
width = int(image.width * scale_by)
height = int(image.height * scale_by)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
@ -151,7 +160,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_txt2img
p.scripts = modules.scripts.scripts_img2img
p.script_args = args
if shared.cmd_opts.enable_console_prompts:

View File

@ -32,7 +32,7 @@ def download_default_clip_interrogate_categories(content_dir):
category_types = ["artists", "flavors", "mediums", "movements"]
try:
os.makedirs(tmpdir)
os.makedirs(tmpdir, exist_ok=True)
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
@ -41,7 +41,7 @@ def download_default_clip_interrogate_categories(content_dir):
errors.display(e, "downloading default CLIP interrogate categories")
finally:
if os.path.exists(tmpdir):
os.remove(tmpdir)
os.removedirs(tmpdir)
class InterrogateModels:

View File

@ -13,6 +13,18 @@ def connect(token, port, region):
config = conf.PyngrokConfig(
auth_token=token, region=region
)
# Guard for existing tunnels
existing = ngrok.get_tunnels(pyngrok_config=config)
if existing:
for established in existing:
# Extra configuration in the case that the user is also using ngrok for other tunnels
if established.config['addr'][-4:] == str(port):
public_url = existing[0].public_url
print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')
return
try:
if account is None:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url

View File

@ -20,3 +20,4 @@ data_path = cmd_opts_pre.data_dir
models_path = os.path.join(data_path, "models")
extensions_dir = os.path.join(data_path, "extensions")
extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")
config_states_dir = os.path.join(script_path, "config_states")

View File

@ -18,9 +18,14 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
if extras_mode == 1:
for img in image_folder:
image = Image.open(img)
if isinstance(img, Image.Image):
image = img
fn = ''
else:
image = Image.open(os.path.abspath(img.name))
fn = os.path.splitext(img.orig_name)[0]
image_data.append(image)
image_names.append(os.path.splitext(img.orig_name)[0])
image_names.append(fn)
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'

View File

@ -3,6 +3,7 @@ import math
import os
import sys
import warnings
import hashlib
import torch
import numpy as np
@ -105,7 +106,7 @@ class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@ -140,6 +141,7 @@ class StableDiffusionProcessing:
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
@ -162,6 +164,8 @@ class StableDiffusionProcessing:
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
@property
def sd_model(self):
@ -476,6 +480,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
}
generation_params.update(p.extra_generation_params)
@ -491,6 +498,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try:
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
p.override_settings.pop('sd_model_checkpoint', None)
sd_models.reload_model_weights()
for k, v in p.override_settings.items():
setattr(opts, k, v)
@ -507,8 +519,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if p.override_settings_restore_afterwards:
for k, v in stored_opts.items():
setattr(opts, k, v)
if k == 'sd_model_checkpoint':
sd_models.reload_model_weights()
if k == 'sd_vae':
sd_vae.reload_vae_weights()
@ -639,8 +649,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
step_multiplier = 1
if not shared.opts.dont_fix_second_order_samplers_schedule:
try:
step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1
except:
pass
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@ -670,6 +686,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
@ -706,9 +724,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), p.mask_for_overlay.convert('L')).convert('RGBA')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
@ -871,6 +889,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not self.enable_hr:
return samples
self.is_hr_pass = True
target_width = self.hr_upscale_to_x
target_height = self.hr_upscale_to_y
@ -940,6 +960,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
self.is_hr_pass = False
return samples
@ -1007,6 +1029,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.color_corrections = []
imgs = []
for img in self.init_images:
# Save init image
if opts.save_init_img:
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:

View File

@ -13,6 +13,8 @@ import modules.shared as shared
current_task = None
pending_tasks = {}
finished_tasks = []
recorded_results = []
recorded_results_limit = 2
def start_task(id_task):
@ -33,6 +35,12 @@ def finish_task(id_task):
finished_tasks.pop(0)
def record_results(id_task, res):
recorded_results.append((id_task, res))
if len(recorded_results) > recorded_results_limit:
recorded_results.pop(0)
def add_task_to_queue(id_job):
pending_tasks[id_job] = time.time()
@ -97,3 +105,13 @@ def progressapi(req: ProgressRequest):
return ProgressResponse(active=active, queued=queued, completed=completed, progress=progress, eta=eta, live_preview=live_preview, id_live_preview=id_live_preview, textinfo=shared.state.textinfo)
def restore_progress(id_task):
while id_task == current_task or id_task in pending_tasks:
time.sleep(0.1)
res = next(iter([x[1] for x in recorded_results if id_task == x[0]]), None)
if res is not None:
return res
return gr.update(), gr.update(), gr.update(), f"Couldn't restore progress for {id_task}: results either have been discarded or never were obtained"

View File

@ -9,7 +9,7 @@ from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts
from modules import modelloader
class UpscalerRealESRGAN(Upscaler):
def __init__(self, path):
@ -23,7 +23,15 @@ class UpscalerRealESRGAN(Upscaler):
self.enable = True
self.scalers = []
scalers = self.load_models(path)
local_model_paths = self.find_models(ext_filter=[".pth"])
for scaler in scalers:
if scaler.local_data_path.startswith("http"):
filename = modelloader.friendly_name(scaler.local_data_path)
local = next(iter([local_model for local_model in local_model_paths if local_model.endswith(filename + '.pth')]), None)
if local:
scaler.local_data_path = local
if scaler.name in opts.realesrgan_enabled_models:
self.scalers.append(scaler)
@ -64,7 +72,9 @@ class UpscalerRealESRGAN(Upscaler):
print(f"Unable to find model info: {path}")
return None
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
if info.local_data_path.startswith("http"):
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
return info
except Exception as e:
print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)

View File

@ -1,6 +1,5 @@
# this code is adapted from the script contributed by anon from /h/
import io
import pickle
import collections
import sys
@ -12,11 +11,9 @@ import _codecs
import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args):
out = _codecs.encode(*args)
return out
@ -27,7 +24,11 @@ class RestrictedUnpickler(pickle.Unpickler):
def persistent_load(self, saved_id):
assert saved_id[0] == 'storage'
return TypedStorage()
try:
return TypedStorage(_internal=True)
except TypeError:
return TypedStorage() # PyTorch before 2.0 does not have the _internal argument
def find_class(self, module, name):
if self.extra_handler is not None:

View File

@ -93,6 +93,7 @@ callback_map = dict(
callbacks_infotext_pasted=[],
callbacks_script_unloaded=[],
callbacks_before_ui=[],
callbacks_on_reload=[],
)
@ -109,6 +110,14 @@ def app_started_callback(demo: Optional[Blocks], app: FastAPI):
report_exception(c, 'app_started_callback')
def app_reload_callback():
for c in callback_map['callbacks_on_reload']:
try:
c.callback()
except Exception:
report_exception(c, 'callbacks_on_reload')
def model_loaded_callback(sd_model):
for c in callback_map['callbacks_model_loaded']:
try:
@ -254,6 +263,11 @@ def on_app_started(callback):
add_callback(callback_map['callbacks_app_started'], callback)
def on_before_reload(callback):
"""register a function to be called just before the server reloads."""
add_callback(callback_map['callbacks_on_reload'], callback)
def on_model_loaded(callback):
"""register a function to be called when the stable diffusion model is created; the model is
passed as an argument; this function is also called when the script is reloaded. """

View File

@ -2,6 +2,8 @@ import collections
import os.path
import sys
import gc
import threading
import torch
import re
import safetensors.torch
@ -52,6 +54,15 @@ class CheckpointInfo:
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
self.metadata = {}
_, ext = os.path.splitext(self.filename)
if ext.lower() == ".safetensors":
try:
self.metadata = read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading checkpoint metadata: {filename}")
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
@ -395,13 +406,39 @@ def repair_config(sd_config):
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
class SdModelData:
def __init__(self):
self.sd_model = None
self.lock = threading.Lock()
def get_sd_model(self):
if self.sd_model is None:
with self.lock:
try:
load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model")
print("", file=sys.stderr)
print("Stable diffusion model failed to load", file=sys.stderr)
self.sd_model = None
return self.sd_model
def set_sd_model(self, v):
self.sd_model = v
model_data = SdModelData()
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
if model_data.sd_model:
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
gc.collect()
devices.torch_gc()
@ -455,7 +492,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
timer.record("hijack")
sd_model.eval()
shared.sd_model = sd_model
model_data.sd_model = sd_model
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
@ -475,7 +512,7 @@ def reload_model_weights(sd_model=None, info=None):
checkpoint_info = info or select_checkpoint()
if not sd_model:
sd_model = shared.sd_model
sd_model = model_data.sd_model
if sd_model is None: # previous model load failed
current_checkpoint_info = None
@ -503,7 +540,7 @@ def reload_model_weights(sd_model=None, info=None):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return shared.sd_model
return model_data.sd_model
try:
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
@ -526,17 +563,15 @@ def reload_model_weights(sd_model=None, info=None):
return sd_model
def unload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
timer = Timer()
if shared.sd_model:
# shared.sd_model.cond_stage_model.to(devices.cpu)
# shared.sd_model.first_stage_model.to(devices.cpu)
shared.sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
if model_data.sd_model:
model_data.sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
model_data.sd_model = None
sd_model = None
gc.collect()
devices.torch_gc()

View File

@ -60,3 +60,13 @@ def store_latent(decoded):
class InterruptedException(BaseException):
pass
if opts.randn_source == "CPU":
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
torchsde._brownian.brownian_interval._randn = torchsde_randn

View File

@ -76,7 +76,7 @@ class CFGDenoiser(torch.nn.Module):
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@ -115,12 +115,21 @@ class CFGDenoiser(torch.nn.Module):
sigma_in = denoiser_params.sigma
tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond
skip_uncond = False
if tensor.shape[1] == uncond.shape[1]:
if not is_edit_model:
cond_in = torch.cat([tensor, uncond])
else:
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
skip_uncond = True
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
if is_edit_model:
cond_in = torch.cat([tensor, uncond, uncond])
elif skip_uncond:
cond_in = tensor
else:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
@ -144,7 +153,13 @@ class CFGDenoiser(torch.nn.Module):
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
if not skip_uncond:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
denoised_image_indexes = [x[0][0] for x in conds_list]
if skip_uncond:
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
cfg_denoised_callback(denoised_params)
@ -152,20 +167,21 @@ class CFGDenoiser(torch.nn.Module):
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
if not is_edit_model:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
else:
if is_edit_model:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
elif skip_uncond:
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
@ -190,7 +206,7 @@ class TorchHijack:
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
@ -210,6 +226,7 @@ class KDiffusionSampler:
self.eta = None
self.config = None
self.last_latent = None
self.s_min_uncond = None
self.conditioning_key = sd_model.model.conditioning_key
@ -244,6 +261,7 @@ class KDiffusionSampler:
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
@ -326,6 +344,7 @@ class KDiffusionSampler:
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
@ -359,7 +378,8 @@ class KDiffusionSampler:
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -4,6 +4,7 @@ import json
import os
import sys
import time
import requests
from PIL import Image
import gradio as gr
@ -15,6 +16,7 @@ import modules.styles
import modules.devices as devices
from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir
from ldm.models.diffusion.ddpm import LatentDiffusion
demo = None
@ -39,6 +41,7 @@ restricted_opts = {
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
}
ui_reorder_categories = [
@ -54,6 +57,21 @@ ui_reorder_categories = [
"scripts",
]
# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
gradio_hf_hub_themes = [
"gradio/glass",
"gradio/monochrome",
"gradio/seafoam",
"gradio/soft",
"freddyaboulton/dracula_revamped",
"gradio/dracula_test",
"abidlabs/dracula_test",
"abidlabs/pakistan",
"dawood/microsoft_windows",
"ysharma/steampunk"
]
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
@ -252,7 +270,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
"save_init_img": OptionInfo(False, "Save init images when using img2img"),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
@ -268,6 +286,7 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
"outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
"outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
"outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
"outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
@ -283,6 +302,8 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
"SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
@ -331,6 +352,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -338,6 +360,7 @@ options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
@ -361,7 +384,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
@ -377,16 +400,20 @@ options_templates.update(options_section(('ui', "User interface"), {
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"js_modal_lightbox_gamepad": OptionInfo(True, "Navigate image viewer with gamepad"),
"js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
"hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
"gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes})
}))
options_templates.update(options_section(('ui', "Live previews"), {
@ -405,6 +432,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
@ -424,6 +452,7 @@ options_templates.update(options_section(('postprocessing', "Postprocessing"), {
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable these extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
"restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
@ -574,13 +603,37 @@ class Options:
return value
opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
class Shared(sys.modules[__name__].__class__):
"""
this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
at program startup.
"""
sd_model_val = None
@property
def sd_model(self):
import modules.sd_models
return modules.sd_models.model_data.get_sd_model()
@sd_model.setter
def sd_model(self, value):
import modules.sd_models
modules.sd_models.model_data.set_sd_model(value)
sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
sys.modules[__name__].__class__ = Shared
settings_components = None
"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
@ -594,12 +647,28 @@ latent_upscale_modes = {
sd_upscalers = []
sd_model = None
clip_model = None
progress_print_out = sys.stdout
gradio_theme = gr.themes.Base()
def reload_gradio_theme(theme_name=None):
global gradio_theme
if not theme_name:
theme_name = opts.gradio_theme
if theme_name == "Default":
gradio_theme = gr.themes.Default()
else:
try:
gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
except requests.exceptions.ConnectionError:
print("Can't access HuggingFace Hub, falling back to default Gradio theme")
gradio_theme = gr.themes.Default()
class TotalTQDM:
def __init__(self):

View File

@ -72,16 +72,14 @@ class StyleDatabase:
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")
# Always keep a backup file around
if os.path.exists(path):
shutil.copy(path, path + ".bak")
fd = os.open(path, os.O_RDWR|os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
# Always keep a backup file around
if os.path.exists(path):
shutil.move(path, path + ".bak")
shutil.move(temp_path, path)

View File

@ -11,7 +11,7 @@ from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try:
if process_caption:
shared.interrogator.load()
@ -19,7 +19,7 @@ def preprocess(id_task, process_src, process_dst, process_width, process_height,
if process_caption_deepbooru:
deepbooru.model.start()
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
finally:
@ -131,7 +131,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr
return wh and center_crop(image, *wh)
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@ -161,7 +161,9 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
params.subindex = 0
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB")
img = Image.open(filename)
img = ImageOps.exif_transpose(img)
img = img.convert("RGB")
except Exception:
continue
@ -223,6 +225,10 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
process_default_resize = False
if process_keep_original_size:
save_pic(img, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index, params, existing_caption=existing_caption)

View File

@ -233,6 +233,12 @@ class EmbeddingDatabase:
self.load_from_dir(embdir)
embdir.update()
# re-sort word_embeddings because load_from_dir may not load in alphabetic order.
# using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
self.word_embeddings.clear()
self.word_embeddings.update(sorted_word_embeddings)
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings

View File

@ -19,7 +19,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing, progress
from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path
@ -81,6 +81,7 @@ apply_style_symbol = '\U0001f4cb' # 📋
clear_prompt_symbol = '\U0001f5d1\ufe0f' # 🗑️
extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅
restore_progress_symbol = '\U0001F300' # 🌀
def plaintext_to_html(text):
@ -94,6 +95,9 @@ def send_gradio_gallery_to_image(x):
def visit(x, func, path=""):
if hasattr(x, 'children'):
if isinstance(x, gr.Tabs) and x.elem_id is not None:
# Tabs element can't have a label, have to use elem_id instead
func(f"{path}/Tabs@{x.elem_id}", x)
for c in x.children:
visit(c, func, path)
elif x.label is not None:
@ -127,6 +131,16 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>"
def resize_from_to_html(width, height, scale_by):
target_width = int(width * scale_by)
target_height = int(height * scale_by)
if not target_width or not target_height:
return "no image selected"
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{target_width}x{target_height}</span>"
def apply_styles(prompt, prompt_neg, styles):
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, styles)
@ -171,8 +185,8 @@ def create_seed_inputs(target_interface):
with FormRow(elem_id=target_interface + '_seed_row', variant="compact"):
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
seed.style(container=False)
random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed')
random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed', label='Random seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed', label='Reuse seed')
seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
@ -312,6 +326,7 @@ def create_toprow(is_img2img):
extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks")
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply")
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create")
restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False)
token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
@ -329,7 +344,7 @@ def create_toprow(is_img2img):
prompt_styles = gr.Dropdown(label="Styles", elem_id=f"{id_part}_styles", choices=[k for k, v in shared.prompt_styles.styles.items()], value=[], multiselect=True)
create_refresh_button(prompt_styles, shared.prompt_styles.reload, lambda: {"choices": [k for k, v in shared.prompt_styles.styles.items()]}, f"refresh_{id_part}_styles")
return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button
return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button
def setup_progressbar(*args, **kwargs):
@ -446,7 +461,7 @@ def create_ui():
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=False)
txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="binary", visible=False)
@ -468,7 +483,7 @@ def create_ui():
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn")
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", label="Switch dims")
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="txt2img_column_batch"):
@ -578,6 +593,19 @@ def create_ui():
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
restore_progress_button.click(
fn=progress.restore_progress,
_js="restoreProgressTxt2img",
inputs=[dummy_component],
outputs=[
txt2img_gallery,
generation_info,
html_info,
html_log,
],
show_progress=False,
)
txt_prompt_img.change(
fn=modules.images.image_data,
inputs=[
@ -646,7 +674,7 @@ def create_ui():
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=True)
img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=True)
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="binary", visible=False)
@ -673,6 +701,8 @@ def create_ui():
copy_image_buttons.append((button, name, elem))
with gr.Tabs(elem_id="mode_img2img"):
img2img_selected_tab = gr.State(0)
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab") as tab_img2img:
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA").style(height=480)
add_copy_image_controls('img2img', init_img)
@ -715,6 +745,12 @@ def create_ui():
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]
img2img_image_inputs = [init_img, sketch, init_img_with_mask, inpaint_color_sketch]
for i, tab in enumerate(img2img_tabs):
tab.select(fn=lambda tabnum=i: tabnum, inputs=[], outputs=[img2img_selected_tab])
def copy_image(img):
if isinstance(img, dict) and 'image' in img:
return img['image']
@ -744,11 +780,44 @@ def create_ui():
elif category == "dimensions":
with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4):
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
selected_scale_tab = gr.State(value=0)
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
with gr.Tabs():
with gr.Tab(label="Resize to") as tab_scale_to:
with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4):
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
with gr.Tab(label="Resize by") as tab_scale_by:
scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
with FormRow():
scale_by_html = FormHTML(resize_from_to_html(0, 0, 0.0), elem_id="img2img_scale_resolution_preview")
gr.Slider(label="Unused", elem_id="img2img_unused_scale_by_slider")
button_update_resize_to = gr.Button(visible=False, elem_id="img2img_update_resize_to")
on_change_args = dict(
fn=resize_from_to_html,
_js="currentImg2imgSourceResolution",
inputs=[dummy_component, dummy_component, scale_by],
outputs=scale_by_html,
show_progress=False,
)
scale_by.release(**on_change_args)
button_update_resize_to.click(**on_change_args)
# the code below is meant to update the resolution label after the image in the image selection UI has changed.
# as it is now the event keeps firing continuously for inpaint edits, which ruins the page with constant requests.
# I assume this must be a gradio bug and for now we'll just do it for non-inpaint inputs.
for component in [init_img, sketch]:
component.change(fn=lambda: None, _js="updateImg2imgResizeToTextAfterChangingImage", inputs=[], outputs=[], show_progress=False)
tab_scale_to.select(fn=lambda: 0, inputs=[], outputs=[selected_scale_tab])
tab_scale_by.select(fn=lambda: 1, inputs=[], outputs=[selected_scale_tab])
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="img2img_column_batch"):
@ -759,7 +828,7 @@ def create_ui():
with FormGroup():
with FormRow():
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=False)
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
elif category == "seed":
@ -806,7 +875,7 @@ def create_ui():
def select_img2img_tab(tab):
return gr.update(visible=tab in [2, 3, 4]), gr.update(visible=tab == 3),
for i, elem in enumerate([tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]):
for i, elem in enumerate(img2img_tabs):
elem.select(
fn=lambda tab=i: select_img2img_tab(tab),
inputs=[],
@ -859,8 +928,10 @@ def create_ui():
denoising_strength,
seed,
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
selected_scale_tab,
height,
width,
scale_by,
resize_mode,
inpaint_full_res,
inpaint_full_res_padding,
@ -898,6 +969,19 @@ def create_ui():
submit.click(**img2img_args)
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
restore_progress_button.click(
fn=progress.restore_progress,
_js="restoreProgressImg2img",
inputs=[dummy_component],
outputs=[
img2img_gallery,
generation_info,
html_info,
html_log,
],
show_progress=False,
)
img2img_interrogate.click(
fn=lambda *args: process_interrogate(interrogate, *args),
**interrogate_args,
@ -1019,8 +1103,9 @@ def create_ui():
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description])
with FormRow():
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
save_metadata = gr.Checkbox(value=True, label="Save metadata (.safetensors only)", elem_id="modelmerger_save_metadata")
with FormRow():
with gr.Column():
@ -1048,7 +1133,7 @@ def create_ui():
with gr.Row(variant="compact").style(equal_height=False):
with gr.Tabs(elem_id="train_tabs"):
with gr.Tab(label="Create embedding"):
with gr.Tab(label="Create embedding", id="create_embedding"):
new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name")
initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt")
@ -1061,7 +1146,7 @@ def create_ui():
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding")
with gr.Tab(label="Create hypernetwork"):
with gr.Tab(label="Create hypernetwork", id="create_hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
@ -1079,7 +1164,7 @@ def create_ui():
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
with gr.Tab(label="Preprocess images"):
with gr.Tab(label="Preprocess images", id="preprocess_images"):
process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
@ -1087,6 +1172,7 @@ def create_ui():
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
with gr.Row():
process_keep_original_size = gr.Checkbox(label='Keep original size', elem_id="train_process_keep_original_size")
process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
@ -1146,7 +1232,7 @@ def create_ui():
def get_textual_inversion_template_names():
return sorted([x for x in textual_inversion.textual_inversion_templates])
with gr.Tab(label="Train"):
with gr.Tab(label="Train", id="train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with FormRow():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
@ -1204,7 +1290,7 @@ def create_ui():
with gr.Column(elem_id='ti_gallery_container'):
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4)
ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
ti_progress = gr.HTML(elem_id="ti_progress", value="")
ti_outcome = gr.HTML(elem_id="ti_error", value="")
@ -1253,6 +1339,7 @@ def create_ui():
process_width,
process_height,
preprocess_txt_action,
process_keep_original_size,
process_flip,
process_split,
process_caption,
@ -1479,7 +1566,7 @@ def create_ui():
current_row.__exit__()
current_tab.__exit__()
with gr.TabItem("Actions"):
with gr.TabItem("Actions", id="actions"):
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
@ -1487,7 +1574,7 @@ def create_ui():
unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
with gr.TabItem("Licenses"):
with gr.TabItem("Licenses", id="licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
@ -1565,7 +1652,7 @@ def create_ui():
for _interface, label, _ifid in interfaces:
shared.tab_names.append(label)
with gr.Blocks(analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"):
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
@ -1598,18 +1685,17 @@ def create_ui():
component = component_dict[k]
info = opts.data_labels[k]
component.change(
change_handler = component.release if hasattr(component, 'release') else component.change
change_handler(
fn=lambda value, k=k: run_settings_single(value, key=k),
inputs=[component],
outputs=[component, text_settings],
show_progress=info.refresh is not None,
)
text_settings.change(
fn=lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit"),
inputs=[],
outputs=[image_cfg_scale],
)
update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
@ -1658,6 +1744,7 @@ def create_ui():
config_source,
bake_in_vae,
discard_weights,
save_metadata,
],
outputs=[
primary_model_name,
@ -1705,7 +1792,7 @@ def create_ui():
if init_field is not None:
init_field(saved_value)
if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown] and x.visible:
if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown, ToolButton] and x.visible:
apply_field(x, 'visible')
if type(x) == gr.Slider:
@ -1735,12 +1822,27 @@ def create_ui():
apply_field(x, 'value', check_dropdown, getattr(x, 'init_field', None))
def check_tab_id(tab_id):
tab_items = list(filter(lambda e: isinstance(e, gr.TabItem), x.children))
if type(tab_id) == str:
tab_ids = [t.id for t in tab_items]
return tab_id in tab_ids
elif type(tab_id) == int:
return tab_id >= 0 and tab_id < len(tab_items)
else:
return False
if type(x) == gr.Tabs:
apply_field(x, 'selected', check_tab_id)
visit(txt2img_interface, loadsave, "txt2img")
visit(img2img_interface, loadsave, "img2img")
visit(extras_interface, loadsave, "extras")
visit(modelmerger_interface, loadsave, "modelmerger")
visit(train_interface, loadsave, "train")
loadsave(f"webui/Tabs@{tabs.elem_id}", tabs)
if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)):
with open(ui_config_file, "w", encoding="utf8") as file:
json.dump(ui_settings, file, indent=4)

View File

@ -125,7 +125,7 @@ Requested path was: {f}
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
generation_info = None
with gr.Column():

View File

@ -62,3 +62,13 @@ class DropdownMulti(FormComponent, gr.Dropdown):
def get_block_name(self):
return "dropdown"
class DropdownEditable(FormComponent, gr.Dropdown):
"""Same as gr.Dropdown but allows editing value"""
def __init__(self, **kwargs):
super().__init__(allow_custom_value=True, **kwargs)
def get_block_name(self):
return "dropdown"

View File

@ -2,6 +2,7 @@ import json
import os.path
import sys
import time
from datetime import datetime
import traceback
import git
@ -11,10 +12,12 @@ import html
import shutil
import errno
from modules import extensions, shared, paths
from modules import extensions, shared, paths, config_states
from modules.paths_internal import config_states_dir
from modules.call_queue import wrap_gradio_gpu_call
available_extensions = {"extensions": []}
STYLE_PRIMARY = ' style="color: var(--primary-400)"'
def check_access():
@ -30,6 +33,9 @@ def apply_and_restart(disable_list, update_list, disable_all):
update = json.loads(update_list)
assert type(update) == list, f"wrong update_list data for apply_and_restart: {update_list}"
if update:
save_config_state("Backup (pre-update)")
update = set(update)
for ext in extensions.extensions:
@ -50,6 +56,46 @@ def apply_and_restart(disable_list, update_list, disable_all):
shared.state.need_restart = True
def save_config_state(name):
current_config_state = config_states.get_config()
if not name:
name = "Config"
current_config_state["name"] = name
filename = os.path.join(config_states_dir, datetime.now().strftime("%Y_%m_%d-%H_%M_%S") + "_" + name + ".json")
print(f"Saving backup of webui/extension state to {filename}.")
with open(filename, "w", encoding="utf-8") as f:
json.dump(current_config_state, f)
config_states.list_config_states()
new_value = next(iter(config_states.all_config_states.keys()), "Current")
new_choices = ["Current"] + list(config_states.all_config_states.keys())
return gr.Dropdown.update(value=new_value, choices=new_choices), f"<span>Saved current webui/extension state to \"{filename}\"</span>"
def restore_config_state(confirmed, config_state_name, restore_type):
if config_state_name == "Current":
return "<span>Select a config to restore from.</span>"
if not confirmed:
return "<span>Cancelled.</span>"
check_access()
config_state = config_states.all_config_states[config_state_name]
print(f"*** Restoring webui state from backup: {restore_type} ***")
if restore_type == "extensions" or restore_type == "both":
shared.opts.restore_config_state_file = config_state["filepath"]
shared.opts.save(shared.config_filename)
if restore_type == "webui" or restore_type == "both":
config_states.restore_webui_config(config_state)
shared.state.interrupt()
shared.state.need_restart = True
return ""
def check_updates(id_task, disable_list):
check_access()
@ -76,6 +122,16 @@ def check_updates(id_task, disable_list):
return extension_table(), ""
def make_commit_link(commit_hash, remote, text=None):
if text is None:
text = commit_hash[:8]
if remote.startswith("https://github.com/"):
href = os.path.join(remote, "commit", commit_hash)
return f'<a href="{href}" target="_blank">{text}</a>'
else:
return text
def extension_table():
code = f"""<!-- {time.time()} -->
<table id="extensions">
@ -102,13 +158,17 @@ def extension_table():
style = ""
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
style = ' style="color: var(--primary-400)"'
style = STYLE_PRIMARY
version_link = ext.version
if ext.commit_hash and ext.remote:
version_link = make_commit_link(ext.commit_hash, ext.remote, ext.version)
code += f"""
<tr>
<td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td>{remote}</td>
<td>{ext.version}</td>
<td>{version_link}</td>
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
</tr>
"""
@ -121,6 +181,133 @@ def extension_table():
return code
def update_config_states_table(state_name):
if state_name == "Current":
config_state = config_states.get_config()
else:
config_state = config_states.all_config_states[state_name]
config_name = config_state.get("name", "Config")
created_date = time.asctime(time.gmtime(config_state["created_at"]))
filepath = config_state.get("filepath", "<unknown>")
code = f"""<!-- {time.time()} -->"""
webui_remote = config_state["webui"]["remote"] or ""
webui_branch = config_state["webui"]["branch"]
webui_commit_hash = config_state["webui"]["commit_hash"] or "<unknown>"
webui_commit_date = config_state["webui"]["commit_date"]
if webui_commit_date:
webui_commit_date = time.asctime(time.gmtime(webui_commit_date))
else:
webui_commit_date = "<unknown>"
remote = f"""<a href="{html.escape(webui_remote)}" target="_blank">{html.escape(webui_remote or '')}</a>"""
commit_link = make_commit_link(webui_commit_hash, webui_remote)
date_link = make_commit_link(webui_commit_hash, webui_remote, webui_commit_date)
current_webui = config_states.get_webui_config()
style_remote = ""
style_branch = ""
style_commit = ""
if current_webui["remote"] != webui_remote:
style_remote = STYLE_PRIMARY
if current_webui["branch"] != webui_branch:
style_branch = STYLE_PRIMARY
if current_webui["commit_hash"] != webui_commit_hash:
style_commit = STYLE_PRIMARY
code += f"""<h2>Config Backup: {config_name}</h2>
<div><b>Filepath:</b> {filepath}</div>
<div><b>Created at:</b> {created_date}</div>"""
code += f"""<h2>WebUI State</h2>
<table id="config_state_webui">
<thead>
<tr>
<th>URL</th>
<th>Branch</th>
<th>Commit</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><label{style_remote}>{remote}</label></td>
<td><label{style_branch}>{webui_branch}</label></td>
<td><label{style_commit}>{commit_link}</label></td>
<td><label{style_commit}>{date_link}</label></td>
</tr>
</tbody>
</table>
"""
code += """<h2>Extension State</h2>
<table id="config_state_extensions">
<thead>
<tr>
<th>Extension</th>
<th>URL</th>
<th>Branch</th>
<th>Commit</th>
<th>Date</th>
</tr>
</thead>
<tbody>
"""
ext_map = {ext.name: ext for ext in extensions.extensions}
for ext_name, ext_conf in config_state["extensions"].items():
ext_remote = ext_conf["remote"] or ""
ext_branch = ext_conf["branch"] or "<unknown>"
ext_enabled = ext_conf["enabled"]
ext_commit_hash = ext_conf["commit_hash"] or "<unknown>"
ext_commit_date = ext_conf["commit_date"]
if ext_commit_date:
ext_commit_date = time.asctime(time.gmtime(ext_commit_date))
else:
ext_commit_date = "<unknown>"
remote = f"""<a href="{html.escape(ext_remote)}" target="_blank">{html.escape(ext_remote or '')}</a>"""
commit_link = make_commit_link(ext_commit_hash, ext_remote)
date_link = make_commit_link(ext_commit_hash, ext_remote, ext_commit_date)
style_enabled = ""
style_remote = ""
style_branch = ""
style_commit = ""
if ext_name in ext_map:
current_ext = ext_map[ext_name]
current_ext.read_info_from_repo()
if current_ext.enabled != ext_enabled:
style_enabled = STYLE_PRIMARY
if current_ext.remote != ext_remote:
style_remote = STYLE_PRIMARY
if current_ext.branch != ext_branch:
style_branch = STYLE_PRIMARY
if current_ext.commit_hash != ext_commit_hash:
style_commit = STYLE_PRIMARY
code += f"""
<tr>
<td><label{style_enabled}><input class="gr-check-radio gr-checkbox" type="checkbox" disabled="true" {'checked="checked"' if ext_enabled else ''}>{html.escape(ext_name)}</label></td>
<td><label{style_remote}>{remote}</label></td>
<td><label{style_branch}>{ext_branch}</label></td>
<td><label{style_commit}>{commit_link}</label></td>
<td><label{style_commit}>{date_link}</label></td>
</tr>
"""
code += """
</tbody>
</table>
"""
return code
def normalize_git_url(url):
if url is None:
return ""
@ -129,7 +316,7 @@ def normalize_git_url(url):
return url
def install_extension_from_url(dirname, url):
def install_extension_from_url(dirname, url, branch_name=None):
check_access()
assert url, 'No URL specified'
@ -150,10 +337,17 @@ def install_extension_from_url(dirname, url):
try:
shutil.rmtree(tmpdir, True)
with git.Repo.clone_from(url, tmpdir) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
if not branch_name:
# if no branch is specified, use the default branch
with git.Repo.clone_from(url, tmpdir) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
else:
with git.Repo.clone_from(url, tmpdir, branch=branch_name) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
try:
os.rename(tmpdir, target_dir)
except OSError as err:
@ -292,9 +486,11 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
def create_ui():
import modules.ui
config_states.list_config_states()
with gr.Blocks(analytics_enabled=False) as ui:
with gr.Tabs(elem_id="tabs_extensions") as tabs:
with gr.TabItem("Installed"):
with gr.TabItem("Installed", id="installed"):
with gr.Row(elem_id="extensions_installed_top"):
apply = gr.Button(value="Apply and restart UI", variant="primary")
@ -327,7 +523,7 @@ def create_ui():
outputs=[extensions_table, info],
)
with gr.TabItem("Available"):
with gr.TabItem("Available", id="available"):
with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json", label="Extension index URL").style(container=False)
@ -374,16 +570,41 @@ def create_ui():
outputs=[available_extensions_table, install_result]
)
with gr.TabItem("Install from URL"):
with gr.TabItem("Install from URL", id="install_from_url"):
install_url = gr.Text(label="URL for extension's git repository")
install_branch = gr.Text(label="Specific branch name", placeholder="Leave empty for default main branch")
install_dirname = gr.Text(label="Local directory name", placeholder="Leave empty for auto")
install_button = gr.Button(value="Install", variant="primary")
install_result = gr.HTML(elem_id="extension_install_result")
install_button.click(
fn=modules.ui.wrap_gradio_call(install_extension_from_url, extra_outputs=[gr.update()]),
inputs=[install_dirname, install_url],
inputs=[install_dirname, install_url, install_branch],
outputs=[extensions_table, install_result],
)
with gr.TabItem("Backup/Restore"):
with gr.Row(elem_id="extensions_backup_top_row"):
config_states_list = gr.Dropdown(label="Saved Configs", elem_id="extension_backup_saved_configs", value="Current", choices=["Current"] + list(config_states.all_config_states.keys()))
modules.ui.create_refresh_button(config_states_list, config_states.list_config_states, lambda: {"choices": ["Current"] + list(config_states.all_config_states.keys())}, "refresh_config_states")
config_restore_type = gr.Radio(label="State to restore", choices=["extensions", "webui", "both"], value="extensions", elem_id="extension_backup_restore_type")
config_restore_button = gr.Button(value="Restore Selected Config", variant="primary", elem_id="extension_backup_restore")
with gr.Row(elem_id="extensions_backup_top_row2"):
config_save_name = gr.Textbox("", placeholder="Config Name", show_label=False)
config_save_button = gr.Button(value="Save Current Config")
config_states_info = gr.HTML("")
config_states_table = gr.HTML(lambda: update_config_states_table("Current"))
config_save_button.click(fn=save_config_state, inputs=[config_save_name], outputs=[config_states_list, config_states_info])
dummy_component = gr.Label(visible=False)
config_restore_button.click(fn=restore_config_state, _js="config_state_confirm_restore", inputs=[dummy_component, config_states_list, config_restore_type], outputs=[config_states_info])
config_states_list.change(
fn=update_config_states_table,
inputs=[config_states_list],
outputs=[config_states_table],
)
return ui

View File

@ -241,7 +241,7 @@ def create_ui(container, button, tabname):
with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs:
for page in ui.stored_extra_pages:
with gr.Tab(page.title):
with gr.Tab(page.title, id=page.title.lower().replace(" ", "_")):
page_elem = gr.HTML(page.create_html(ui.tabname))
ui.pages.append(page_elem)

View File

@ -9,13 +9,13 @@ def create_ui():
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab") as tab_single:
with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch Process', id="batch_process", elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.Files(label="Batch Process", interactive=True, elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
with gr.TabItem('Batch from Directory', id="batch_from_directory", elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")

View File

@ -36,7 +36,7 @@ def save_pil_to_file(pil_image, dir=None):
if already_saved_as and os.path.isfile(already_saved_as):
register_tmp_file(shared.demo, already_saved_as)
file_obj = Savedfile(already_saved_as)
file_obj = Savedfile(f"{already_saved_as}?{os.path.getmtime(already_saved_as)}")
return file_obj
if shared.opts.temp_dir != "":

View File

@ -1,11 +1,11 @@
astunparse
blendmodes
accelerate
basicsr
fonts
font-roboto
gfpgan
gradio==3.23
invisible-watermark
gradio==3.28.1
numpy
omegaconf
opencv-contrib-python

View File

@ -1,10 +1,10 @@
blendmodes==2022
transformers==4.25.1
accelerate==0.12.0
accelerate==0.18.0
basicsr==1.4.2
gfpgan==1.3.8
gradio==3.23
numpy==1.23.3
gradio==3.28.1
numpy==1.23.5
Pillow==9.4.0
realesrgan==0.3.0
torch
@ -25,6 +25,6 @@ lark==1.1.2
inflection==0.5.1
GitPython==3.1.30
torchsde==0.2.5
safetensors==0.3.0
safetensors==0.3.1
httpcore<=0.15
fastapi==0.94.0

View File

@ -7,7 +7,7 @@ function gradioApp() {
}
function get_uiCurrentTab() {
return gradioApp().querySelector('#tabs button:not(.border-transparent)')
return gradioApp().querySelector('#tabs button.selected')
}
function get_uiCurrentTabContent() {

View File

@ -1,9 +1,40 @@
import modules.scripts as scripts
import gradio as gr
import ast
import copy
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
def convertExpr2Expression(expr):
expr.lineno = 0
expr.col_offset = 0
result = ast.Expression(expr.value, lineno=0, col_offset = 0)
return result
def exec_with_return(code, module):
"""
like exec() but can return values
https://stackoverflow.com/a/52361938/5862977
"""
code_ast = ast.parse(code)
init_ast = copy.deepcopy(code_ast)
init_ast.body = code_ast.body[:-1]
last_ast = copy.deepcopy(code_ast)
last_ast.body = code_ast.body[-1:]
exec(compile(init_ast, "<ast>", "exec"), module.__dict__)
if type(last_ast.body[0]) == ast.Expr:
return eval(compile(convertExpr2Expression(last_ast.body[0]), "<ast>", "eval"), module.__dict__)
else:
exec(compile(last_ast, "<ast>", "exec"), module.__dict__)
class Script(scripts.Script):
def title(self):
@ -13,12 +44,23 @@ class Script(scripts.Script):
return cmd_opts.allow_code
def ui(self, is_img2img):
code = gr.Textbox(label="Python code", lines=1, elem_id=self.elem_id("code"))
example = """from modules.processing import process_images
return [code]
p.width = 768
p.height = 768
p.batch_size = 2
p.steps = 10
return process_images(p)
"""
def run(self, p, code):
code = gr.Code(value=example, language="python", label="Python code", elem_id=self.elem_id("code"))
indent_level = gr.Number(label='Indent level', value=2, precision=0, elem_id=self.elem_id("indent_level"))
return [code, indent_level]
def run(self, p, code, indent_level):
assert cmd_opts.allow_code, '--allow-code option must be enabled'
display_result_data = [[], -1, ""]
@ -29,13 +71,20 @@ class Script(scripts.Script):
display_result_data[2] = i
from types import ModuleType
compiled = compile(code, '', 'exec')
module = ModuleType("testmodule")
module.__dict__.update(globals())
module.p = p
module.display = display
exec(compiled, module.__dict__)
indent = " " * indent_level
indented = code.replace('\n', '\n' + indent)
body = f"""def __webuitemp__():
{indent}{indented}
__webuitemp__()"""
result = exec_with_return(body, module)
if isinstance(result, Processed):
return result
return Processed(p, *display_result_data)

View File

@ -275,7 +275,7 @@ class Script(scripts.Script):
if opts.samples_save:
for img in all_processed_images:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.samples_format, info=res.info, p=p)
if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)

View File

@ -138,7 +138,7 @@ class Script(scripts.Script):
combined_image = images.combine_grid(grid)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info, p=p)
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, [combined_image], initial_seed, initial_info)

View File

@ -4,8 +4,8 @@ import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
from modules.ui_components import FormRow
from modules.ui_components import FormRow, ToolButton
from modules.ui import switch_values_symbol
upscale_cache = {}
@ -25,9 +25,12 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
with FormRow():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Column(elem_id="upscaling_column_size", scale=4):
upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with FormRow():
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
@ -36,6 +39,7 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
upscaling_res_switch_btn.click(lambda w, h: (h, w), inputs=[upscaling_resize_w, upscaling_resize_h], outputs=[upscaling_resize_w, upscaling_resize_h], show_progress=False)
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])

View File

@ -86,7 +86,7 @@ def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
p.override_settings['sd_model_checkpoint'] = info.hash
def confirm_checkpoints(p, xs):
@ -211,7 +211,8 @@ axis_options = [
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
@ -374,16 +375,19 @@ class Script(scripts.Script):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
x_values_dropdown = gr.Dropdown(label="X values",visible=False,multiselect=True,interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
y_values_dropdown = gr.Dropdown(label="Y values",visible=False,multiselect=True,interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
z_values_dropdown = gr.Dropdown(label="Z values",visible=False,multiselect=True,interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
@ -401,54 +405,74 @@ class Script(scripts.Script):
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
xy_swap_args = [x_type, x_values, y_type, y_values]
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, z_type, z_values]
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, z_type, z_values]
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
return ", ".join(axis.choices()) if axis.choices else gr.update()
return axis.choices() if axis.choices else gr.update()
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values_dropdown])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values_dropdown])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values_dropdown])
def select_axis(x_type):
return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
def select_axis(axis_type,axis_values_dropdown):
choices = self.current_axis_options[axis_type].choices
has_choices = choices is not None
current_values = axis_values_dropdown
if has_choices:
choices = choices()
if isinstance(current_values,str):
current_values = current_values.split(",")
current_values = list(filter(lambda x: x in choices, current_values))
return gr.Button.update(visible=has_choices),gr.Textbox.update(visible=not has_choices),gr.update(choices=choices if has_choices else None,visible=has_choices,value=current_values)
x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
x_type.change(fn=select_axis, inputs=[x_type,x_values_dropdown], outputs=[fill_x_button,x_values,x_values_dropdown])
y_type.change(fn=select_axis, inputs=[y_type,y_values_dropdown], outputs=[fill_y_button,y_values,y_values_dropdown])
z_type.change(fn=select_axis, inputs=[z_type,z_values_dropdown], outputs=[fill_z_button,z_values,z_values_dropdown])
def get_dropdown_update_from_params(axis,params):
val_key = axis + " Values"
vals = params.get(val_key,"")
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
return gr.update(value = valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(x_values_dropdown, lambda params:get_dropdown_update_from_params("X",params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
(y_values_dropdown, lambda params:get_dropdown_update_from_params("Y",params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
(z_values_dropdown, lambda params:get_dropdown_update_from_params("Z",params)),
)
return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
def process_axis(opt, vals):
def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.choices is not None:
valslist = vals_dropdown
else:
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.type == int:
valslist_ext = []
@ -506,13 +530,19 @@ class Script(scripts.Script):
return valslist
x_opt = self.current_axis_options[x_type]
xs = process_axis(x_opt, x_values)
if x_opt.choices is not None:
x_values = ",".join(x_values_dropdown)
xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
ys = process_axis(y_opt, y_values)
if y_opt.choices is not None:
y_values = ",".join(y_values_dropdown)
ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
zs = process_axis(z_opt, z_values)
if z_opt.choices is not None:
z_values = ",".join(z_values_dropdown)
zs = process_axis(z_opt, z_values, z_values_dropdown)
# this could be moved to common code, but unlikely to be ever triggered anywhere else
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes

View File

@ -246,7 +246,7 @@ button.custom-button{
}
}
#txt2img_gallery img, #img2img_gallery img{
#txt2img_gallery img, #img2img_gallery img, #extras_gallery img{
object-fit: scale-down;
}
#txt2img_actions_column, #img2img_actions_column {
@ -293,7 +293,12 @@ button.custom-button{
margin-left: -0.75em
}
#txtimg_hr_finalres .resolution{
#img2img_scale_resolution_preview.block{
display: flex;
align-items: end;
}
#txtimg_hr_finalres .resolution, #img2img_scale_resolution_preview .resolution{
font-weight: bold;
}
@ -312,6 +317,10 @@ div.dimensions-tools{
align-content: center;
}
div#extras_scale_to_tab div.form{
flex-direction: row;
}
#mode_img2img .gradio-image > div.fixed-height, #mode_img2img .gradio-image > div.fixed-height img{
height: 480px !important;
max-height: 480px !important;
@ -333,6 +342,18 @@ div.dimensions-tools{
overflow-wrap: break-word;
}
#img2img_column_batch{
align-self: end;
margin-bottom: 0.9em;
}
#img2img_unused_scale_by_slider{
visibility: hidden;
width: 0.5em;
max-width: 0.5em;
min-width: 0.5em;
}
/* settings */
#quicksettings {
width: fit-content;
@ -513,6 +534,8 @@ div.dimensions-tools{
#lightboxModal > img.modalImageFullscreen{
object-fit: contain;
height: 100%;
width: 100%;
min-height: 0;
}
.modalPrev,
@ -642,6 +665,12 @@ footer {
/* extra networks UI */
.extra-network-cards{
height: 725px;
overflow: scroll;
resize: vertical;
}
.extra-networks > div > [id *= '_extra_']{
margin: 0.3em;
}

View File

@ -11,7 +11,7 @@ fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
export TORCH_COMMAND="pip install torch torchvision"
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
export PYTORCH_ENABLE_MPS_FALLBACK=1

View File

@ -43,4 +43,7 @@
# Uncomment to enable accelerated launch
#export ACCELERATE="True"
# Uncomment to disable TCMalloc
#export NO_TCMALLOC="True"
###########################################

117
webui.py
View File

@ -5,6 +5,9 @@ import importlib
import signal
import re
import warnings
import json
from threading import Thread
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
@ -20,6 +23,9 @@ startup_timer = timer.Timer()
import torch
import pytorch_lightning # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
startup_timer.record("import torch")
import gradio
@ -37,7 +43,7 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
@ -67,11 +73,51 @@ else:
server_name = "0.0.0.0" if cmd_opts.listen else None
def fix_asyncio_event_loop_policy():
"""
The default `asyncio` event loop policy only automatically creates
event loops in the main threads. Other threads must create event
loops explicitly or `asyncio.get_event_loop` (and therefore
`.IOLoop.current`) will fail. Installing this policy allows event
loops to be created automatically on any thread, matching the
behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
"""
import asyncio
if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
# "Any thread" and "selector" should be orthogonal, but there's not a clean
# interface for composing policies so pick the right base.
_BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
else:
_BasePolicy = asyncio.DefaultEventLoopPolicy
class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
"""Event loop policy that allows loop creation on any thread.
Usage::
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
"""
def get_event_loop(self) -> asyncio.AbstractEventLoop:
try:
return super().get_event_loop()
except (RuntimeError, AssertionError):
# This was an AssertionError in python 3.4.2 (which ships with debian jessie)
# and changed to a RuntimeError in 3.4.3.
# "There is no current event loop in thread %r"
loop = self.new_event_loop()
self.set_event_loop(loop)
return loop
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
def check_versions():
if shared.cmd_opts.skip_version_check:
return
expected_torch_version = "1.13.1"
expected_torch_version = "2.0.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
@ -84,7 +130,7 @@ there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
expected_xformers_version = "0.0.16rc425"
expected_xformers_version = "0.0.17"
if shared.xformers_available:
import xformers
@ -99,12 +145,27 @@ Use --skip-version-check commandline argument to disable this check.
def initialize():
fix_asyncio_event_loop_policy()
check_versions()
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
startup_timer.record("list extensions")
config_state_file = shared.opts.restore_config_state_file
shared.opts.restore_config_state_file = ""
shared.opts.save(shared.config_filename)
if os.path.isfile(config_state_file):
print(f"*** About to restore extension state from file: {config_state_file}")
with open(config_state_file, "r", encoding="utf-8") as f:
config_state = json.load(f)
config_states.restore_extension_config(config_state)
startup_timer.record("restore extension config")
elif config_state_file:
print(f"!!! Config state backup not found: {config_state_file}")
if cmd_opts.ui_debug_mode:
shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
modules.scripts.load_scripts()
@ -126,30 +187,20 @@ def initialize():
modules.scripts.load_scripts()
startup_timer.record("load scripts")
modelloader.load_upscalers()
startup_timer.record("load upscalers")
modules.sd_vae.refresh_vae_list()
startup_timer.record("refresh VAE")
modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
startup_timer.record("refresh textual inversion templates")
try:
modules.sd_models.load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model")
print("", file=sys.stderr)
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
exit(1)
startup_timer.record("load SD checkpoint")
# load model in parallel to other startup stuff
Thread(target=lambda: shared.sd_model).start()
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
startup_timer.record("opts onchange")
shared.reload_hypernetworks()
@ -212,6 +263,8 @@ def wait_on_server(demo=None):
time.sleep(0.5)
demo.close()
time.sleep(0.5)
modules.script_callbacks.app_reload_callback()
break
@ -227,7 +280,6 @@ def api_only():
print(f"Startup time: {startup_timer.summary()}.")
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
def webui():
launch_api = cmd_opts.api
initialize()
@ -254,12 +306,23 @@ def webui():
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
# this restores the missing /docs endpoint
if launch_api and not hasattr(FastAPI, 'original_setup'):
def fastapi_setup(self):
self.docs_url = "/docs"
self.redoc_url = "/redoc"
self.original_setup()
FastAPI.original_setup = FastAPI.setup
FastAPI.setup = fastapi_setup
app, local_url, share_url = shared.demo.launch(
share=cmd_opts.share,
server_name=server_name,
server_port=cmd_opts.port,
ssl_keyfile=cmd_opts.tls_keyfile,
ssl_certfile=cmd_opts.tls_certfile,
ssl_verify=cmd_opts.disable_tls_verify,
debug=cmd_opts.gradio_debug,
auth=[tuple(cred.split(':')) for cred in gradio_auth_creds] if gradio_auth_creds else None,
inbrowser=cmd_opts.autolaunch,
@ -290,6 +353,11 @@ def webui():
print(f"Startup time: {startup_timer.summary()}.")
if cmd_opts.subpath:
redirector = FastAPI()
redirector.get("/")
mounted_app = gradio.mount_gradio_app(redirector, shared.demo, path=f"/{cmd_opts.subpath}")
wait_on_server(shared.demo)
print('Restarting UI...')
@ -301,6 +369,19 @@ def webui():
extensions.list_extensions()
startup_timer.record("list extensions")
config_state_file = shared.opts.restore_config_state_file
shared.opts.restore_config_state_file = ""
shared.opts.save(shared.config_filename)
if os.path.isfile(config_state_file):
print(f"*** About to restore extension state from file: {config_state_file}")
with open(config_state_file, "r", encoding="utf-8") as f:
config_state = json.load(f)
config_states.restore_extension_config(config_state)
startup_timer.record("restore extension config")
elif config_state_file:
print(f"!!! Config state backup not found: {config_state_file}")
localization.list_localizations(cmd_opts.localizations_dir)
modelloader.forbid_loaded_nonbuiltin_upscalers()

View File

@ -23,7 +23,7 @@ fi
# Install directory without trailing slash
if [[ -z "${install_dir}" ]]
then
install_dir="/home/$(whoami)"
install_dir="$(pwd)"
fi
# Name of the subdirectory (defaults to stable-diffusion-webui)
@ -118,7 +118,8 @@ case "$gpu_info" in
esac
if echo "$gpu_info" | grep -q "AMD" && [[ -z "${TORCH_COMMAND}" ]]
then
export TORCH_COMMAND="pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/rocm5.2"
# AMD users will still use torch 1.13 because 2.0 does not seem to work.
export TORCH_COMMAND="pip install torch==1.13.1+rocm5.2 torchvision==0.14.1+rocm5.2 --index-url https://download.pytorch.org/whl/rocm5.2"
fi
for preq in "${GIT}" "${python_cmd}"
@ -152,35 +153,57 @@ else
cd "${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
fi
printf "\n%s\n" "${delimiter}"
printf "Create and activate python venv"
printf "\n%s\n" "${delimiter}"
cd "${install_dir}"/"${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
if [[ ! -d "${venv_dir}" ]]
if [[ -z "${VIRTUAL_ENV}" ]];
then
"${python_cmd}" -m venv "${venv_dir}"
first_launch=1
fi
# shellcheck source=/dev/null
if [[ -f "${venv_dir}"/bin/activate ]]
then
source "${venv_dir}"/bin/activate
printf "\n%s\n" "${delimiter}"
printf "Create and activate python venv"
printf "\n%s\n" "${delimiter}"
cd "${install_dir}"/"${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
if [[ ! -d "${venv_dir}" ]]
then
"${python_cmd}" -m venv "${venv_dir}"
first_launch=1
fi
# shellcheck source=/dev/null
if [[ -f "${venv_dir}"/bin/activate ]]
then
source "${venv_dir}"/bin/activate
else
printf "\n%s\n" "${delimiter}"
printf "\e[1m\e[31mERROR: Cannot activate python venv, aborting...\e[0m"
printf "\n%s\n" "${delimiter}"
exit 1
fi
else
printf "\n%s\n" "${delimiter}"
printf "\e[1m\e[31mERROR: Cannot activate python venv, aborting...\e[0m"
printf "python venv already activate: ${VIRTUAL_ENV}"
printf "\n%s\n" "${delimiter}"
exit 1
fi
# Try using TCMalloc on Linux
prepare_tcmalloc() {
if [[ "${OSTYPE}" == "linux"* ]] && [[ -z "${NO_TCMALLOC}" ]] && [[ -z "${LD_PRELOAD}" ]]; then
TCMALLOC="$(ldconfig -p | grep -Po "libtcmalloc.so.\d" | head -n 1)"
if [[ ! -z "${TCMALLOC}" ]]; then
echo "Using TCMalloc: ${TCMALLOC}"
export LD_PRELOAD="${TCMALLOC}"
else
printf "\e[1m\e[31mCannot locate TCMalloc (improves CPU memory usage)\e[0m\n"
fi
fi
}
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
then
printf "\n%s\n" "${delimiter}"
printf "Accelerating launch.py..."
printf "\n%s\n" "${delimiter}"
prepare_tcmalloc
exec accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
else
printf "\n%s\n" "${delimiter}"
printf "Launching launch.py..."
printf "\n%s\n" "${delimiter}"
prepare_tcmalloc
exec "${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
fi