updated interface to use Blocks
added mode toggle for img2img added inpainting to readme
This commit is contained in:
parent
bb2faa5fb8
commit
7434b3ebcc
@ -204,6 +204,10 @@ To use this feature, tick a checkbox in the img2img interface. Original
|
|||||||
image will be upscaled to twice the original width and height, while width and height sliders
|
image will be upscaled to twice the original width and height, while width and height sliders
|
||||||
will specify the size of individual tiles. At the moment this method does not support batch size.
|
will specify the size of individual tiles. At the moment this method does not support batch size.
|
||||||
|
|
||||||
|
Rcommended parameters for upscaling:
|
||||||
|
- Sampling method: Euler a
|
||||||
|
- Denoising strength: 0.2, can go up to 0.4 if you feel adventureous
|
||||||
|
|
||||||
![](images/sd-upscale.jpg)
|
![](images/sd-upscale.jpg)
|
||||||
|
|
||||||
### User scripts
|
### User scripts
|
||||||
@ -261,4 +265,7 @@ compared to normal operation on my RTX 3090.
|
|||||||
This is an independent implementation that does not require any modification to original Stable Diffusion code, and
|
This is an independent implementation that does not require any modification to original Stable Diffusion code, and
|
||||||
with all code concenrated in one place rather than scattered around the program.
|
with all code concenrated in one place rather than scattered around the program.
|
||||||
|
|
||||||
|
### Inpainting
|
||||||
|
In img2img tab, draw a mask over a part of image, and that part will be in-painted.
|
||||||
|
|
||||||
|
![](images/inpainting.png)
|
BIN
images/inpainting.png
Normal file
BIN
images/inpainting.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.3 MiB |
BIN
screenshot.png
BIN
screenshot.png
Binary file not shown.
Before Width: | Height: | Size: 865 KiB After Width: | Height: | Size: 513 KiB |
61
style.css
Normal file
61
style.css
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
|
||||||
|
button{
|
||||||
|
align-self: stretch !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
#img2img_mode{
|
||||||
|
padding: 0 0 1em 0;
|
||||||
|
border: none !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
#img2img_prompt, #txt2img_prompt{
|
||||||
|
padding: 0;
|
||||||
|
border: none !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
#img2maskimg .h-60{
|
||||||
|
height: 30rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.overflow-hidden, .gr-panel{
|
||||||
|
overflow: visible !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
fieldset span.text-gray-500{
|
||||||
|
position: absolute;
|
||||||
|
top: -0.425em;
|
||||||
|
background-color: rgb(249 250 251);
|
||||||
|
line-height: 0.7em;
|
||||||
|
padding: 0 0.5em;
|
||||||
|
}
|
||||||
|
.dark fieldset span.text-gray-500 { background-color: rgb(17 24 39); }
|
||||||
|
|
||||||
|
.gr-panel div.flex-col div.justify-between label, label.block span{
|
||||||
|
position: absolute;
|
||||||
|
top: -0.4em;
|
||||||
|
background-color: rgb(249 250 251);
|
||||||
|
line-height: 0.7em;
|
||||||
|
padding: 0 0.5em;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
.dark .gr-panel div.flex-col div.justify-between label{ background-color: rgb(17 24 39); }
|
||||||
|
|
||||||
|
.gr-panel div.flex-col div.justify-between label span{
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.gr-panel div.flex-col div.justify-between div{
|
||||||
|
position: absolute;
|
||||||
|
top: -0.1em;
|
||||||
|
right: 1em;
|
||||||
|
padding: 0 0.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
input[type="range"]{
|
||||||
|
margin: 0.5em 0 -0.3em 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
#txt2img_sampling label{
|
||||||
|
padding-left: 0.6em;
|
||||||
|
padding-right: 0.6em;
|
||||||
|
}
|
263
webui.py
263
webui.py
@ -8,6 +8,7 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import gradio.utils
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin, ImageFilter, ImageOps
|
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin, ImageFilter, ImageOps
|
||||||
from torch import autocast
|
from torch import autocast
|
||||||
@ -24,18 +25,16 @@ from ldm.util import instantiate_from_config
|
|||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
from ldm.models.diffusion.plms import PLMSSampler
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
|
||||||
try:
|
# fix gradio phoning home
|
||||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
gradio.utils.version_check = lambda: None
|
||||||
|
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
||||||
from transformers import logging
|
|
||||||
logging.set_verbosity_error()
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
||||||
mimetypes.init()
|
mimetypes.init()
|
||||||
mimetypes.add_type('application/javascript', '.js')
|
mimetypes.add_type('application/javascript', '.js')
|
||||||
|
|
||||||
|
script_path = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
|
||||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||||
opt_C = 4
|
opt_C = 4
|
||||||
opt_f = 8
|
opt_f = 8
|
||||||
@ -72,12 +71,12 @@ css_hide_progressbar = """
|
|||||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor'])
|
SamplerData = namedtuple('SamplerData', ['name', 'constructor'])
|
||||||
samplers = [
|
samplers = [
|
||||||
*[SamplerData(x[0], lambda funcname=x[1]: KDiffusionSampler(funcname)) for x in [
|
*[SamplerData(x[0], lambda funcname=x[1]: KDiffusionSampler(funcname)) for x in [
|
||||||
('Euler ancestral', 'sample_euler_ancestral'),
|
('Euler a', 'sample_euler_ancestral'),
|
||||||
('Euler', 'sample_euler'),
|
('Euler', 'sample_euler'),
|
||||||
('LMS', 'sample_lms'),
|
('LMS', 'sample_lms'),
|
||||||
('Heun', 'sample_heun'),
|
('Heun', 'sample_heun'),
|
||||||
('DPM 2', 'sample_dpm_2'),
|
('DPM2', 'sample_dpm_2'),
|
||||||
('DPM 2 Ancestral', 'sample_dpm_2_ancestral'),
|
('DPM2 a', 'sample_dpm_2_ancestral'),
|
||||||
] if hasattr(k_diffusion.sampling, x[1])],
|
] if hasattr(k_diffusion.sampling, x[1])],
|
||||||
SamplerData('DDIM', lambda: VanillaStableDiffusionSampler(DDIMSampler)),
|
SamplerData('DDIM', lambda: VanillaStableDiffusionSampler(DDIMSampler)),
|
||||||
SamplerData('PLMS', lambda: VanillaStableDiffusionSampler(PLMSSampler)),
|
SamplerData('PLMS', lambda: VanillaStableDiffusionSampler(PLMSSampler)),
|
||||||
@ -1083,31 +1082,67 @@ class Flagging(gr.FlaggingCallback):
|
|||||||
|
|
||||||
print("Logged:", filenames[0])
|
print("Logged:", filenames[0])
|
||||||
|
|
||||||
|
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
|
||||||
|
with gr.Row():
|
||||||
|
prompt = gr.Textbox(label="Prompt", elem_id="txt2img_prompt", show_label=False, placeholder="Prompt", lines=1)
|
||||||
|
submit = gr.Button('Generate', variant='primary')
|
||||||
|
|
||||||
|
with gr.Row().style(equal_height=False):
|
||||||
|
with gr.Column(variant='panel'):
|
||||||
|
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||||
|
sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers_for_img2img[0].name, type="index")
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
use_GFPGAN = gr.Checkbox(label='GFPGAN', value=False, visible=have_gfpgan)
|
||||||
|
prompt_matrix = gr.Checkbox(label='Prompt matrix', value=False)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
||||||
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||||
|
|
||||||
|
cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0)
|
||||||
|
|
||||||
|
with gr.Group():
|
||||||
|
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||||
|
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||||
|
|
||||||
|
seed = gr.Number(label='Seed', value=-1)
|
||||||
|
|
||||||
|
code = gr.Textbox(label="Python script", visible=cmd_opts.allow_code, lines=1)
|
||||||
|
|
||||||
|
with gr.Column(variant='panel'):
|
||||||
|
with gr.Group():
|
||||||
|
gallery = gr.Gallery(label='Output')
|
||||||
|
output_seed = gr.Number(label='Seed', visible=False)
|
||||||
|
html_info = gr.HTML()
|
||||||
|
|
||||||
|
txt2img_args = dict(
|
||||||
|
fn=wrap_gradio_call(txt2img),
|
||||||
|
inputs=[
|
||||||
|
prompt,
|
||||||
|
steps,
|
||||||
|
sampler_index,
|
||||||
|
use_GFPGAN,
|
||||||
|
prompt_matrix,
|
||||||
|
batch_count,
|
||||||
|
batch_size,
|
||||||
|
cfg_scale,
|
||||||
|
seed,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
code
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
gallery,
|
||||||
|
output_seed,
|
||||||
|
html_info
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt.submit(**txt2img_args)
|
||||||
|
submit.click(**txt2img_args)
|
||||||
|
|
||||||
|
|
||||||
txt2img_interface = gr.Interface(
|
|
||||||
wrap_gradio_call(txt2img),
|
|
||||||
inputs=[
|
|
||||||
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
|
||||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20),
|
|
||||||
gr.Radio(label='Sampling method', choices=[x.name for x in samplers], value=samplers[0].name, type="index"),
|
|
||||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=have_gfpgan),
|
|
||||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
|
||||||
gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
|
||||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
|
||||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.5),
|
|
||||||
gr.Number(label='Seed', value=-1),
|
|
||||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
|
||||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512),
|
|
||||||
gr.Textbox(label="Python script", visible=cmd_opts.allow_code, lines=1)
|
|
||||||
],
|
|
||||||
outputs=[
|
|
||||||
gr.Gallery(label="Images"),
|
|
||||||
gr.Number(label='Seed'),
|
|
||||||
gr.HTML(),
|
|
||||||
],
|
|
||||||
title="Stable Diffusion Text-to-Image",
|
|
||||||
flagging_callback=Flagging()
|
|
||||||
)
|
|
||||||
|
|
||||||
def fill(image, mask):
|
def fill(image, mask):
|
||||||
image_mod = Image.new('RGBA', (image.width, image.height))
|
image_mod = Image.new('RGBA', (image.width, image.height))
|
||||||
@ -1223,10 +1258,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
return samples_ddim
|
return samples_ddim
|
||||||
|
|
||||||
|
|
||||||
def img2img(prompt: str, init_img, init_img_with_mask, ddim_steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, use_GFPGAN: bool, prompt_matrix, loopback: bool, sd_upscale: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int):
|
def img2img(prompt: str, init_img, init_img_with_mask, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, use_GFPGAN: bool, prompt_matrix, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int):
|
||||||
outpath = opts.outdir or "outputs/img2img-samples"
|
outpath = opts.outdir or "outputs/img2img-samples"
|
||||||
|
|
||||||
if init_img_with_mask is not None:
|
is_classic = mode == 0
|
||||||
|
is_inpaint = mode == 1
|
||||||
|
is_loopback = mode == 2
|
||||||
|
is_upscale = mode == 3
|
||||||
|
|
||||||
|
if is_inpaint:
|
||||||
image = init_img_with_mask['image']
|
image = init_img_with_mask['image']
|
||||||
mask = init_img_with_mask['mask']
|
mask = init_img_with_mask['mask']
|
||||||
else:
|
else:
|
||||||
@ -1242,7 +1282,7 @@ def img2img(prompt: str, init_img, init_img_with_mask, ddim_steps: int, sampler_
|
|||||||
sampler_index=sampler_index,
|
sampler_index=sampler_index,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_iter=n_iter,
|
n_iter=n_iter,
|
||||||
steps=ddim_steps,
|
steps=steps,
|
||||||
cfg_scale=cfg_scale,
|
cfg_scale=cfg_scale,
|
||||||
width=width,
|
width=width,
|
||||||
height=height,
|
height=height,
|
||||||
@ -1257,7 +1297,7 @@ def img2img(prompt: str, init_img, init_img_with_mask, ddim_steps: int, sampler_
|
|||||||
extra_generation_params={"Denoising Strength": denoising_strength}
|
extra_generation_params={"Denoising Strength": denoising_strength}
|
||||||
)
|
)
|
||||||
|
|
||||||
if loopback:
|
if is_loopback:
|
||||||
output_images, info = None, None
|
output_images, info = None, None
|
||||||
history = []
|
history = []
|
||||||
initial_seed = None
|
initial_seed = None
|
||||||
@ -1286,7 +1326,7 @@ def img2img(prompt: str, init_img, init_img_with_mask, ddim_steps: int, sampler_
|
|||||||
|
|
||||||
processed = Processed(history, initial_seed, initial_info)
|
processed = Processed(history, initial_seed, initial_info)
|
||||||
|
|
||||||
elif sd_upscale:
|
elif is_upscale:
|
||||||
initial_seed = None
|
initial_seed = None
|
||||||
initial_info = None
|
initial_info = None
|
||||||
|
|
||||||
@ -1345,36 +1385,103 @@ def img2img(prompt: str, init_img, init_img_with_mask, ddim_steps: int, sampler_
|
|||||||
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
||||||
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
|
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
|
||||||
|
|
||||||
img2img_interface = gr.Interface(
|
|
||||||
wrap_gradio_call(img2img),
|
with gr.Blocks(analytics_enabled=False) as img2img_interface:
|
||||||
inputs=[
|
with gr.Row():
|
||||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
prompt = gr.Textbox(label="Prompt", elem_id="img2img_prompt", show_label=False, placeholder="Prompt", lines=1)
|
||||||
gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil"),
|
submit = gr.Button('Generate', variant='primary')
|
||||||
gr.Image(label="Image for inpainting with mask", source="upload", interactive=True, type="pil", tool="sketch"),
|
|
||||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20),
|
with gr.Row().style(equal_height=False):
|
||||||
gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index"),
|
|
||||||
gr.Slider(label='Inpainting: mask blur', minimum=0, maximum=64, step=1, value=4),
|
with gr.Column(variant='panel'):
|
||||||
gr.Radio(label='Inpainting: masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index"),
|
with gr.Group():
|
||||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=have_gfpgan),
|
switch_mode = gr.Radio(label='Mode', elem_id="img2img_mode", choices=['Redraw whole image', 'Inpaint a part of image', 'Loopback', 'SD upscale'], value='Redraw whole image', type="index", show_label=False)
|
||||||
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
init_img = gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil")
|
||||||
gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False),
|
init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False)
|
||||||
gr.Checkbox(label='Stable Diffusion upscale', value=False),
|
resize_mode = gr.Radio(label="Resize mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
|
||||||
gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
|
||||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
|
mask_blur = gr.Slider(label='Inpainting: mask blur', minimum=0, maximum=64, step=1, value=4, visible=False)
|
||||||
gr.Number(label='Seed', value=-1),
|
inpainting_fill = gr.Radio(label='Inpainting: masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", visible=False)
|
||||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
|
|
||||||
gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512),
|
with gr.Row():
|
||||||
gr.Radio(label="Resize mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
|
use_GFPGAN = gr.Checkbox(label='GFPGAN', value=False, visible=have_gfpgan)
|
||||||
],
|
prompt_matrix = gr.Checkbox(label='Prompt matrix', value=False)
|
||||||
outputs=[
|
|
||||||
gr.Gallery(),
|
with gr.Row():
|
||||||
gr.Number(label='Seed'),
|
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
|
||||||
gr.HTML(),
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
|
||||||
],
|
|
||||||
allow_flagging="never",
|
with gr.Group():
|
||||||
)
|
cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0)
|
||||||
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75)
|
||||||
|
|
||||||
|
with gr.Group():
|
||||||
|
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||||
|
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||||
|
|
||||||
|
seed = gr.Number(label='Seed', value=-1)
|
||||||
|
|
||||||
|
with gr.Column(variant='panel'):
|
||||||
|
with gr.Group():
|
||||||
|
gallery = gr.Gallery(label='Output')
|
||||||
|
output_seed = gr.Number(label='Seed', visible=False)
|
||||||
|
html_info = gr.HTML()
|
||||||
|
|
||||||
|
def apply_mode(mode):
|
||||||
|
is_classic = mode == 0
|
||||||
|
is_inpaint = mode == 1
|
||||||
|
is_loopback = mode == 2
|
||||||
|
is_upscale = mode == 3
|
||||||
|
|
||||||
|
return {
|
||||||
|
init_img: gr.update(visible=not is_inpaint),
|
||||||
|
init_img_with_mask: gr.update(visible=is_inpaint),
|
||||||
|
mask_blur: gr.update(visible=is_inpaint),
|
||||||
|
inpainting_fill: gr.update(visible=is_inpaint),
|
||||||
|
prompt_matrix: gr.update(visible=is_classic),
|
||||||
|
batch_count: gr.update(visible=not is_upscale),
|
||||||
|
batch_size: gr.update(visible=not is_loopback),
|
||||||
|
}
|
||||||
|
|
||||||
|
switch_mode.change(
|
||||||
|
apply_mode,
|
||||||
|
inputs=[switch_mode],
|
||||||
|
outputs=[init_img, init_img_with_mask, mask_blur, inpainting_fill, prompt_matrix, batch_count, batch_size]
|
||||||
|
)
|
||||||
|
|
||||||
|
img2img_args = dict(
|
||||||
|
fn=wrap_gradio_call(img2img),
|
||||||
|
inputs=[
|
||||||
|
prompt,
|
||||||
|
init_img,
|
||||||
|
init_img_with_mask,
|
||||||
|
steps,
|
||||||
|
sampler_index,
|
||||||
|
mask_blur,
|
||||||
|
inpainting_fill,
|
||||||
|
use_GFPGAN,
|
||||||
|
prompt_matrix,
|
||||||
|
switch_mode,
|
||||||
|
batch_count,
|
||||||
|
batch_size,
|
||||||
|
cfg_scale,
|
||||||
|
denoising_strength,
|
||||||
|
seed,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
resize_mode
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
gallery,
|
||||||
|
output_seed,
|
||||||
|
html_info
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt.submit(**img2img_args)
|
||||||
|
submit.click(**img2img_args)
|
||||||
|
|
||||||
|
|
||||||
def upscale_with_realesrgan(image, RealESRGAN_upscaling, RealESRGAN_model_index):
|
def upscale_with_realesrgan(image, RealESRGAN_upscaling, RealESRGAN_model_index):
|
||||||
@ -1434,6 +1541,7 @@ extras_interface = gr.Interface(
|
|||||||
gr.HTML(),
|
gr.HTML(),
|
||||||
],
|
],
|
||||||
allow_flagging="never",
|
allow_flagging="never",
|
||||||
|
analytics_enabled=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -1463,6 +1571,7 @@ pnginfo_interface = gr.Interface(
|
|||||||
gr.HTML(),
|
gr.HTML(),
|
||||||
],
|
],
|
||||||
allow_flagging="never",
|
allow_flagging="never",
|
||||||
|
analytics_enabled=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -1514,6 +1623,7 @@ settings_interface = gr.Interface(
|
|||||||
title=None,
|
title=None,
|
||||||
description=None,
|
description=None,
|
||||||
allow_flagging="never",
|
allow_flagging="never",
|
||||||
|
analytics_enabled=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
interfaces = [
|
interfaces = [
|
||||||
@ -1524,6 +1634,15 @@ interfaces = [
|
|||||||
(settings_interface, "Settings"),
|
(settings_interface, "Settings"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
try:
|
||||||
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||||
|
|
||||||
|
from transformers import logging
|
||||||
|
|
||||||
|
logging.set_verbosity_error()
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
sd_config = OmegaConf.load(cmd_opts.config)
|
sd_config = OmegaConf.load(cmd_opts.config)
|
||||||
sd_model = load_model_from_config(sd_config, cmd_opts.ckpt)
|
sd_model = load_model_from_config(sd_config, cmd_opts.ckpt)
|
||||||
sd_model = (sd_model if cmd_opts.no_half else sd_model.half())
|
sd_model = (sd_model if cmd_opts.no_half else sd_model.half())
|
||||||
@ -1537,13 +1656,17 @@ else:
|
|||||||
model_hijack = StableDiffusionModelHijack()
|
model_hijack = StableDiffusionModelHijack()
|
||||||
model_hijack.hijack(sd_model)
|
model_hijack.hijack(sd_model)
|
||||||
|
|
||||||
|
with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
|
||||||
|
css = file.read()
|
||||||
|
|
||||||
demo = gr.TabbedInterface(
|
demo = gr.TabbedInterface(
|
||||||
interface_list=[x[0] for x in interfaces],
|
interface_list=[x[0] for x in interfaces],
|
||||||
tab_names=[x[1] for x in interfaces],
|
tab_names=[x[1] for x in interfaces],
|
||||||
css=("" if cmd_opts.no_progressbar_hiding else css_hide_progressbar) + """
|
css=("" if cmd_opts.no_progressbar_hiding else css_hide_progressbar) + """
|
||||||
.output-html p {margin: 0 0.5em;}
|
.output-html p {margin: 0 0.5em;}
|
||||||
.performance { font-size: 0.85em; color: #444; }
|
.performance { font-size: 0.85em; color: #444; }
|
||||||
"""
|
""" + css,
|
||||||
|
analytics_enabled=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
demo.queue(concurrency_count=1)
|
demo.queue(concurrency_count=1)
|
||||||
|
Loading…
Reference in New Issue
Block a user