added deepbooru settings (threshold and sort by alpha or likelyhood)
This commit is contained in:
parent
b980e7188c
commit
76ef3d75f6
@ -3,31 +3,32 @@ from concurrent.futures import ProcessPoolExecutor
|
||||
import multiprocessing
|
||||
import time
|
||||
|
||||
|
||||
def get_deepbooru_tags(pil_image, threshold=0.5):
|
||||
def get_deepbooru_tags(pil_image):
|
||||
"""
|
||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||
"""
|
||||
from modules import shared # prevents circular reference
|
||||
create_deepbooru_process(threshold)
|
||||
create_deepbooru_process(shared.opts.deepbooru_threshold, shared.opts.deepbooru_sort_alpha)
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process_queue.put(pil_image)
|
||||
while shared.deepbooru_process_return["value"] == -1:
|
||||
time.sleep(0.2)
|
||||
tags = shared.deepbooru_process_return["value"]
|
||||
release_process()
|
||||
return tags
|
||||
|
||||
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold):
|
||||
def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort):
|
||||
model, tags = get_deepbooru_tags_model()
|
||||
while True: # while process is running, keep monitoring queue for new image
|
||||
pil_image = queue.get()
|
||||
if pil_image == "QUIT":
|
||||
break
|
||||
else:
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold)
|
||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort)
|
||||
|
||||
|
||||
def create_deepbooru_process(threshold=0.5):
|
||||
def create_deepbooru_process(threshold, alpha_sort):
|
||||
"""
|
||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||
@ -40,7 +41,7 @@ def create_deepbooru_process(threshold=0.5):
|
||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||
shared.deepbooru_process_return["value"] = -1
|
||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold))
|
||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort))
|
||||
shared.deepbooru_process.start()
|
||||
|
||||
|
||||
@ -80,7 +81,7 @@ def get_deepbooru_tags_model():
|
||||
return model, tags
|
||||
|
||||
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
|
||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort):
|
||||
import deepdanbooru as dd
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
@ -105,15 +106,28 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
|
||||
|
||||
for i, tag in enumerate(tags):
|
||||
result_dict[tag] = y[i]
|
||||
result_tags_out = []
|
||||
|
||||
unsorted_tags_in_theshold = []
|
||||
result_tags_print = []
|
||||
for tag in tags:
|
||||
if result_dict[tag] >= threshold:
|
||||
if tag.startswith("rating:"):
|
||||
continue
|
||||
result_tags_out.append(tag)
|
||||
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||
|
||||
# sort tags
|
||||
result_tags_out = []
|
||||
sort_ndx = 0
|
||||
print(alpha_sort)
|
||||
if alpha_sort:
|
||||
sort_ndx = 1
|
||||
|
||||
# sort by reverse by likelihood and normal for alpha
|
||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||
for weight, tag in unsorted_tags_in_theshold:
|
||||
result_tags_out.append(tag)
|
||||
|
||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||
|
||||
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
||||
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
||||
|
@ -261,6 +261,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
}))
|
||||
|
||||
if cmd_opts.deepdanbooru:
|
||||
options_templates.update(options_section(('deepbooru-params', "DeepBooru parameters"), {
|
||||
"deepbooru_sort_alpha": OptionInfo(True, "Sort Alphabetical", gr.Checkbox),
|
||||
'deepbooru_threshold': OptionInfo(0.5, "Threshold", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
}))
|
||||
|
||||
|
||||
class Options:
|
||||
data = None
|
||||
|
Loading…
Reference in New Issue
Block a user