diff --git a/README.md b/README.md index e18c7c4d..99c19d3a 100644 --- a/README.md +++ b/README.md @@ -33,6 +33,9 @@ A browser interface based on Gradio library for Stable Diffusion. - Running custom code from UI - Mouseover hints fo most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config +- Random artist button +- Tiling support: UI checkbox to create images that can be tiled like textures +- Progress bar and live image generation preview ## Installing and running diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index ff7e686e..e8bc5be2 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,8 +1,8 @@ from collections import namedtuple - -import ldm.models.diffusion.ddim +import numpy as np import torch import tqdm +from PIL import Image import k_diffusion.sampling import ldm.models.diffusion.ddim @@ -37,12 +37,28 @@ samplers = [ samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] +def sample_to_image(samples): + x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0] + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + return Image.fromarray(x_sample) + + +def store_latent(decoded): + state.current_latent = decoded + + if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: + if not shared.parallel_processing_allowed: + shared.state.current_image = sample_to_image(decoded) + + def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs): if sampler_wrapper.mask is not None: img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts) x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec - state.current_latent = x_dec + store_latent(x_dec) return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs) @@ -144,7 +160,7 @@ class KDiffusionSampler: self.model_wrap_cfg = CFGDenoiser(self.model_wrap) def callback_state(self, d): - state.current_latent = d["denoised"] + store_latent(d["denoised"]) def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): t_enc = int(min(p.denoising_strength, 0.999) * p.steps) diff --git a/modules/shared.py b/modules/shared.py index 5eac3317..49f17145 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -38,7 +38,7 @@ cpu = torch.device("cpu") gpu = torch.device("cuda") device = gpu if torch.cuda.is_available() else cpu batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) - +parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram class State: interrupted = False @@ -49,7 +49,8 @@ class State: sampling_steps = 0 current_latent = None current_image = None - current_progress_index = 0 + current_image_sampling_step = 0 + def interrupt(self): self.interrupted = True @@ -57,6 +58,7 @@ class State: def nextjob(self): self.job_no += 1 self.sampling_step = 0 + self.current_image_sampling_step = 0 state = State() @@ -103,7 +105,7 @@ class Options: "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}), "show_progressbar": OptionInfo(True, "Show progressbar"), - "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N progress pudates. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), + "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), } def __init__(self): diff --git a/modules/ui.py b/modules/ui.py index fb3c4d33..92d8bcdd 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -160,13 +160,11 @@ def check_progress_call(): preview_visibility = gr_show(False) if opts.show_progress_every_n_steps > 0: - if shared.state.current_progress_index % opts.show_progress_every_n_steps == 0 and shared.state.current_latent is not None: - x_sample = shared.sd_model.decode_first_stage(shared.state.current_latent[0:1].type(shared.sd_model.dtype))[0] - x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - shared.state.current_image = Image.fromarray(x_sample) + if shared.parallel_processing_allowed: + if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None: + shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent) + shared.state.current_image_sampling_step = shared.state.sampling_step image = shared.state.current_image @@ -175,8 +173,6 @@ def check_progress_call(): else: preview_visibility = gr_show(True) - shared.state.current_progress_index += 1 - return f"
{progressbar}
", preview_visibility, image diff --git a/webui.py b/webui.py index b6037365..d20ff38f 100644 --- a/webui.py +++ b/webui.py @@ -127,7 +127,7 @@ def wrap_gradio_gpu_call(func): shared.state.job_no = 0 shared.state.current_latent = None shared.state.current_image = None - shared.state.current_progress_index = 0 + shared.state.current_image_sampling_step = 0 with queue_lock: res = func(*args, **kwargs)