Add option for float32 sampling with float16 UNet
This also handles type casting so that ROCm and MPS torch devices work correctly without --no-half. One cast is required for deepbooru in deepbooru_model.py, some explicit casting is required for img2img and inpainting. depth_model can't be converted to float16 or it won't work correctly on some systems (it's known to have issues on MPS) so in sd_models.py model.depth_model is removed for model.half().
This commit is contained in:
parent
48a15821de
commit
84d9ce30cb
@ -157,4 +157,5 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
|
|||||||
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
||||||
- Security advice - RyotaK
|
- Security advice - RyotaK
|
||||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||||
|
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
|
||||||
- (You)
|
- (You)
|
||||||
|
@ -2,6 +2,8 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from modules import devices
|
||||||
|
|
||||||
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
|
||||||
|
|
||||||
|
|
||||||
@ -196,7 +198,7 @@ class DeepDanbooruModel(nn.Module):
|
|||||||
t_358, = inputs
|
t_358, = inputs
|
||||||
t_359 = t_358.permute(*[0, 3, 1, 2])
|
t_359 = t_358.permute(*[0, 3, 1, 2])
|
||||||
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
|
||||||
t_360 = self.n_Conv_0(t_359_padded)
|
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
|
||||||
t_361 = F.relu(t_360)
|
t_361 = F.relu(t_360)
|
||||||
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
|
||||||
t_362 = self.n_MaxPool_0(t_361)
|
t_362 = self.n_MaxPool_0(t_361)
|
||||||
|
@ -79,6 +79,8 @@ cpu = torch.device("cpu")
|
|||||||
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
|
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
|
||||||
dtype = torch.float16
|
dtype = torch.float16
|
||||||
dtype_vae = torch.float16
|
dtype_vae = torch.float16
|
||||||
|
dtype_unet = torch.float16
|
||||||
|
unet_needs_upcast = False
|
||||||
|
|
||||||
|
|
||||||
def randn(seed, shape):
|
def randn(seed, shape):
|
||||||
|
@ -172,7 +172,8 @@ class StableDiffusionProcessing:
|
|||||||
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
|
||||||
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
|
||||||
|
|
||||||
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image))
|
||||||
|
conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image
|
||||||
conditioning = torch.nn.functional.interpolate(
|
conditioning = torch.nn.functional.interpolate(
|
||||||
self.sd_model.depth_model(midas_in),
|
self.sd_model.depth_model(midas_in),
|
||||||
size=conditioning_image.shape[2:],
|
size=conditioning_image.shape[2:],
|
||||||
@ -203,7 +204,7 @@ class StableDiffusionProcessing:
|
|||||||
|
|
||||||
# Create another latent image, this time with a masked version of the original input.
|
# Create another latent image, this time with a masked version of the original input.
|
||||||
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
|
||||||
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
|
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
|
||||||
conditioning_image = torch.lerp(
|
conditioning_image = torch.lerp(
|
||||||
source_image,
|
source_image,
|
||||||
source_image * (1.0 - conditioning_mask),
|
source_image * (1.0 - conditioning_mask),
|
||||||
@ -211,7 +212,7 @@ class StableDiffusionProcessing:
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Encode the new masked image using first stage of network.
|
# Encode the new masked image using first stage of network.
|
||||||
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image))
|
||||||
|
|
||||||
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
# Create the concatenated conditioning tensor to be fed to `c_concat`
|
||||||
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
|
||||||
@ -225,10 +226,10 @@ class StableDiffusionProcessing:
|
|||||||
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
|
||||||
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
# identify itself with a field common to all models. The conditioning_key is also hybrid.
|
||||||
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
|
||||||
return self.depth2img_image_conditioning(source_image)
|
return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image)
|
||||||
|
|
||||||
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
||||||
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
|
return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask)
|
||||||
|
|
||||||
# Dummy zero conditioning if we're not using inpainting or depth model.
|
# Dummy zero conditioning if we're not using inpainting or depth model.
|
||||||
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
||||||
@ -610,7 +611,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if p.n_iter > 1:
|
if p.n_iter > 1:
|
||||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||||
|
|
||||||
with devices.autocast():
|
with devices.autocast(disable=devices.unet_needs_upcast):
|
||||||
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
|
||||||
|
|
||||||
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
||||||
@ -988,7 +989,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
|
|
||||||
image = torch.from_numpy(batch_images)
|
image = torch.from_numpy(batch_images)
|
||||||
image = 2. * image - 1.
|
image = 2. * image - 1.
|
||||||
image = image.to(shared.device)
|
image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None)
|
||||||
|
|
||||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||||
|
|
||||||
|
@ -1,4 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
|
from modules import devices
|
||||||
|
from modules.sd_hijack_utils import CondFunc
|
||||||
|
|
||||||
|
|
||||||
class TorchHijackForUnet:
|
class TorchHijackForUnet:
|
||||||
@ -28,3 +32,28 @@ class TorchHijackForUnet:
|
|||||||
|
|
||||||
|
|
||||||
th = TorchHijackForUnet()
|
th = TorchHijackForUnet()
|
||||||
|
|
||||||
|
|
||||||
|
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
|
||||||
|
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
||||||
|
for y in cond.keys():
|
||||||
|
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
|
||||||
|
with devices.autocast():
|
||||||
|
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
|
||||||
|
|
||||||
|
class GELUHijack(torch.nn.GELU, torch.nn.Module):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
torch.nn.GELU.__init__(self, *args, **kwargs)
|
||||||
|
def forward(self, x):
|
||||||
|
if devices.unet_needs_upcast:
|
||||||
|
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
|
||||||
|
else:
|
||||||
|
return torch.nn.GELU.forward(self, x)
|
||||||
|
|
||||||
|
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
|
||||||
|
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
|
||||||
|
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).to(devices.dtype_unet), unet_needs_upcast)
|
||||||
|
if version.parse(torch.__version__) <= version.parse("1.13.1"):
|
||||||
|
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
|
||||||
|
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
|
||||||
|
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
|
||||||
|
28
modules/sd_hijack_utils.py
Normal file
28
modules/sd_hijack_utils.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import importlib
|
||||||
|
|
||||||
|
class CondFunc:
|
||||||
|
def __new__(cls, orig_func, sub_func, cond_func):
|
||||||
|
self = super(CondFunc, cls).__new__(cls)
|
||||||
|
if isinstance(orig_func, str):
|
||||||
|
func_path = orig_func.split('.')
|
||||||
|
for i in range(len(func_path)-2, -1, -1):
|
||||||
|
try:
|
||||||
|
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
|
||||||
|
break
|
||||||
|
except ImportError:
|
||||||
|
pass
|
||||||
|
for attr_name in func_path[i:-1]:
|
||||||
|
resolved_obj = getattr(resolved_obj, attr_name)
|
||||||
|
orig_func = getattr(resolved_obj, func_path[-1])
|
||||||
|
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
|
||||||
|
self.__init__(orig_func, sub_func, cond_func)
|
||||||
|
return lambda *args, **kwargs: self(*args, **kwargs)
|
||||||
|
def __init__(self, orig_func, sub_func, cond_func):
|
||||||
|
self.__orig_func = orig_func
|
||||||
|
self.__sub_func = sub_func
|
||||||
|
self.__cond_func = cond_func
|
||||||
|
def __call__(self, *args, **kwargs):
|
||||||
|
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
|
||||||
|
return self.__sub_func(self.__orig_func, *args, **kwargs)
|
||||||
|
else:
|
||||||
|
return self.__orig_func(*args, **kwargs)
|
@ -257,16 +257,24 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo):
|
|||||||
|
|
||||||
if not shared.cmd_opts.no_half:
|
if not shared.cmd_opts.no_half:
|
||||||
vae = model.first_stage_model
|
vae = model.first_stage_model
|
||||||
|
depth_model = getattr(model, 'depth_model', None)
|
||||||
|
|
||||||
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
|
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
|
||||||
if shared.cmd_opts.no_half_vae:
|
if shared.cmd_opts.no_half_vae:
|
||||||
model.first_stage_model = None
|
model.first_stage_model = None
|
||||||
|
# with --upcast-sampling, don't convert the depth model weights to float16
|
||||||
|
if shared.cmd_opts.upcast_sampling and depth_model:
|
||||||
|
model.depth_model = None
|
||||||
|
|
||||||
model.half()
|
model.half()
|
||||||
model.first_stage_model = vae
|
model.first_stage_model = vae
|
||||||
|
if depth_model:
|
||||||
|
model.depth_model = depth_model
|
||||||
|
|
||||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||||
|
devices.dtype_unet = model.model.diffusion_model.dtype
|
||||||
|
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
|
||||||
|
|
||||||
model.first_stage_model.to(devices.dtype_vae)
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
@ -372,6 +380,8 @@ def load_model(checkpoint_info=None):
|
|||||||
|
|
||||||
if shared.cmd_opts.no_half:
|
if shared.cmd_opts.no_half:
|
||||||
sd_config.model.params.unet_config.params.use_fp16 = False
|
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||||
|
elif shared.cmd_opts.upcast_sampling:
|
||||||
|
sd_config.model.params.unet_config.params.use_fp16 = True
|
||||||
|
|
||||||
timer = Timer()
|
timer = Timer()
|
||||||
|
|
||||||
|
@ -45,6 +45,7 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion
|
|||||||
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
||||||
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
||||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||||
|
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
|
||||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
||||||
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
||||||
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user