diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 836417c2..82b45b15 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -16,6 +16,7 @@ from importlib import reload pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' have_codeformer = False +codeformer = None def setup_codeformer(): path = modules.paths.paths.get("CodeFormer", None) @@ -64,7 +65,7 @@ def setup_codeformer(): return net, face_helper - def restore(self, np_image): + def restore(self, np_image, w=None): np_image = np_image[:, :, ::-1] net, face_helper = self.create_models() @@ -80,7 +81,7 @@ def setup_codeformer(): try: with torch.no_grad(): - output = net(cropped_face_t, w=shared.opts.code_former_weight, adain=True)[0] + output = net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() @@ -99,7 +100,10 @@ def setup_codeformer(): global have_codeformer have_codeformer = True - shared.face_restorers.append(FaceRestorerCodeFormer()) + + global codeformer + codeformer = FaceRestorerCodeFormer() + shared.face_restorers.append(codeformer) except Exception: print("Error setting up CodeFormer:", file=sys.stderr) diff --git a/modules/ui.py b/modules/ui.py index 05161b00..689debc9 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -21,9 +21,10 @@ from modules.paths import script_path from modules.shared import opts, cmd_opts import modules.shared as shared from modules.sd_samplers import samplers, samplers_for_img2img -import modules.gfpgan_model as gfpgan import modules.realesrgan_model as realesrgan import modules.scripts +import modules.gfpgan_model +import modules.codeformer_model # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() @@ -521,7 +522,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1) with gr.Group(): - face_restoration_blending = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Faces restoration visibility", value=0, interactive=len(shared.face_restorers) > 1) + gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan) + + with gr.Group(): + codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) + codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0=max, 1=none)", value=0, interactive=modules.codeformer_model.have_codeformer) submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') @@ -534,7 +539,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): fn=run_extras, inputs=[ image, - face_restoration_blending, + gfpgan_visibility, + codeformer_visibility, + codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, diff --git a/webui.py b/webui.py index c9a800dd..4f701fad 100644 --- a/webui.py +++ b/webui.py @@ -58,19 +58,28 @@ def load_model_from_config(config, ckpt, verbose=False): cached_images = {} -def run_extras(image, face_restoration_blending, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): +def run_extras(image, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): processing.torch_gc() image = image.convert("RGB") outpath = opts.outdir_samples or opts.outdir_extras_samples - if face_restoration_blending > 0: - restored_img = modules.face_restoration.restore_faces(np.array(image, dtype=np.uint8)) + if gfpgan_visibility > 0: + restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) res = Image.fromarray(restored_img) - if face_restoration_blending < 1.0: - res = Image.blend(image, res, face_restoration_blending) + if gfpgan_visibility < 1.0: + res = Image.blend(image, res, gfpgan_visibility) + + image = res + + if codeformer_visibility > 0: + restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) + res = Image.fromarray(restored_img) + + if codeformer_visibility < 1.0: + res = Image.blend(image, res, codeformer_visibility) image = res