A big rework, just what you were secretly hoping for!

SD upscale moved to scripts
Batch processing script removed
Batch processing added to main img2img and now works with scripts
img2img page UI reworked to use tabs
This commit is contained in:
AUTOMATIC 2022-09-22 12:11:48 +03:00
parent e235d4e691
commit 91bfc71261
10 changed files with 263 additions and 228 deletions

View File

@ -35,13 +35,36 @@ function extract_image_from_gallery_extras(gallery){
return extract_image_from_gallery(gallery); return extract_image_from_gallery(gallery);
} }
function submit(){ function get_tab_index(tabId){
// this calls a function from progressbar.js var res = 0
requestProgress()
gradioApp().getElementById(tabId).querySelector('div').querySelectorAll('button').forEach(function(button, i){
if(button.className.indexOf('bg-white') != -1)
res = i
})
return res
}
function create_tab_index_args(tabId, args){
var res = []
for(var i=0; i<args.length; i++){
res.push(args[i])
}
res[0] = get_tab_index(tabId)
return res
}
function get_extras_tab_index(){
return create_tab_index_args('mode_extras', arguments)
}
function create_submit_args(args){
res = [] res = []
for(var i=0;i<arguments.length;i++){ for(var i=0;i<args.length;i++){
res.push(arguments[i]) res.push(args[i])
} }
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image. // As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
@ -55,11 +78,30 @@ function submit(){
return res return res
} }
function submit(){
requestProgress()
return create_submit_args(arguments)
}
function submit_img2img(){
requestProgress()
res = create_submit_args(arguments)
res[0] = get_tab_index('mode_img2img')
return res
}
function ask_for_style_name(_, prompt_text, negative_prompt_text) { function ask_for_style_name(_, prompt_text, negative_prompt_text) {
name_ = prompt('Style name:') name_ = prompt('Style name:')
return name_ === null ? [null, null, null]: [name_, prompt_text, negative_prompt_text] return name_ === null ? [null, null, null]: [name_, prompt_text, negative_prompt_text]
} }
opts = {} opts = {}
function apply_settings(jsdata){ function apply_settings(jsdata){
console.log(jsdata) console.log(jsdata)

View File

@ -15,30 +15,22 @@ import piexif.helper
cached_images = {} cached_images = {}
def run_extras(image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
devices.torch_gc() devices.torch_gc()
imageArr = [] imageArr = []
# Also keep track of original file names # Also keep track of original file names
imageNameArr = [] imageNameArr = []
if image_folder is not None: if extras_mode == 1:
if image is not None:
print("Batch detected and single image detected, please only use one of the two. Aborting.")
return None
#convert file to pillow image #convert file to pillow image
for img in image_folder: for img in image_folder:
image = Image.fromarray(np.array(Image.open(img))) image = Image.fromarray(np.array(Image.open(img)))
imageArr.append(image) imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0]) imageNameArr.append(os.path.splitext(img.orig_name)[0])
else:
elif image is not None: imageArr.append(image)
if image_folder is not None: imageNameArr.append(None)
print("Batch detected and single image detected, please only use one of the two. Aborting.")
return None
else:
imageArr.append(image)
imageNameArr.append(None)
outpath = opts.outdir_samples or opts.outdir_extras_samples outpath = opts.outdir_samples or opts.outdir_extras_samples

View File

@ -1,4 +1,8 @@
import math import math
import os
import sys
import traceback
import numpy as np import numpy as np
from PIL import Image, ImageOps, ImageChops from PIL import Image, ImageOps, ImageChops
@ -11,9 +15,45 @@ from modules.ui import plaintext_to_html
import modules.images as images import modules.images as images
import modules.scripts import modules.scripts
def img2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_mask, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args):
def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p)
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
p.do_not_save_grid = True
p.do_not_save_samples = True
state.job_count = len(images) * p.n_iter
for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}"
if state.interrupted:
break
img = Image.open(image)
p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
for n, processed_image in enumerate(proc.images):
filename = os.path.basename(image)
if n > 0:
left, right = os.path.splitext(filename)
filename = f"{left}-{n}{right}"
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1 is_inpaint = mode == 1
is_upscale = mode == 2 is_batch = mode == 2
if is_inpaint: if is_inpaint:
if mask_mode == 0: if mask_mode == 0:
@ -23,8 +63,8 @@ def img2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L') mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert('RGB') image = image.convert('RGB')
else: else:
image = init_img image = init_img_inpaint
mask = init_mask mask = init_mask_inpaint
else: else:
image = init_img image = init_img
mask = None mask = None
@ -60,79 +100,19 @@ def img2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
resize_mode=resize_mode, resize_mode=resize_mode,
denoising_strength=denoising_strength, denoising_strength=denoising_strength,
inpaint_full_res=inpaint_full_res, inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert, inpainting_mask_invert=inpainting_mask_invert,
) )
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
p.extra_generation_params["Mask blur"] = mask_blur p.extra_generation_params["Mask blur"] = mask_blur
if is_upscale: if is_batch:
initial_info = None process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
processing.fix_seed(p)
seed = p.seed
upscaler = shared.sd_upscalers[upscaler_index]
img = upscaler.upscale(init_img, init_img.width * 2, init_img.height * 2)
devices.torch_gc()
grid = images.split_grid(img, tile_w=width, tile_h=height, overlap=upscale_overlap)
batch_size = p.batch_size
upscale_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
work = []
for y, h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / batch_size)
state.job_count = batch_count * upscale_count
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
result_images = []
for n in range(upscale_count):
start_seed = seed + n
p.seed = start_seed
work_results = []
for i in range(batch_count):
p.batch_size = batch_size
p.init_images = work[i*batch_size:(i+1)*batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
processed = process_images(p)
if initial_info is None:
initial_info = processed.info
p.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", start_seed, prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, result_images, seed, initial_info)
processed = Processed(p, [], p.seed, "")
else: else:
processed = modules.scripts.scripts_img2img.run(p, *args) processed = modules.scripts.scripts_img2img.run(p, *args)
if processed is None: if processed is None:
processed = process_images(p) processed = process_images(p)

View File

@ -491,7 +491,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpainting_mask_invert=0, **kwargs): def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images
@ -505,6 +505,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.mask_blur = mask_blur self.mask_blur = mask_blur
self.inpainting_fill = inpainting_fill self.inpainting_fill = inpainting_fill
self.inpaint_full_res = inpaint_full_res self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding
self.inpainting_mask_invert = inpainting_mask_invert self.inpainting_mask_invert = inpainting_mask_invert
self.mask = None self.mask = None
self.nmask = None self.nmask = None
@ -527,7 +528,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.inpaint_full_res: if self.inpaint_full_res:
self.mask_for_overlay = self.image_mask self.mask_for_overlay = self.image_mask
mask = self.image_mask.convert('L') mask = self.image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), opts.upscale_at_full_resolution_padding) crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region x1, y1, x2, y2 = crop_region

View File

@ -143,7 +143,6 @@ class ScriptRunner:
return inputs return inputs
def run(self, p: StableDiffusionProcessing, *args): def run(self, p: StableDiffusionProcessing, *args):
script_index = args[0] script_index = args[0]

View File

@ -147,14 +147,13 @@ class Options:
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["Real-ESRGAN 4x plus", "Real-ESRGAN 4x plus anime 6B"],"Select which RealESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), "realesrgan_enabled_models": OptionInfo(["Real-ESRGAN 4x plus", "Real-ESRGAN 4x plus anime 6B"], "Select which RealESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}), "SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}), "ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
"ldsr_pre_down":OptionInfo(1, "LDSR Pre-process downssample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}), "ldsr_pre_down":OptionInfo(1, "LDSR Pre-process downssample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
"ldsr_post_down":OptionInfo(1, "LDSR Post-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}), "ldsr_post_down":OptionInfo(1, "LDSR Post-process down-sample scale. 1 = no down-sampling, 4 = 1/4 scale.", gr.Slider, {"minimum": 1, "maximum": 4, "step": 1}),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
"upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}),
"upscaler_for_hires_fix": OptionInfo(None, "Upscaler for highres. fix", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}), "upscaler_for_hires_fix": OptionInfo(None, "Upscaler for highres. fix", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}),
"show_progressbar": OptionInfo(True, "Show progressbar"), "show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),

View File

@ -527,36 +527,47 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
progressbar = gr.HTML(elem_id="progressbar") progressbar = gr.HTML(elem_id="progressbar")
img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) img2img_preview = gr.Image(elem_id='img2img_preview', visible=False)
setup_progressbar(progressbar, img2img_preview) setup_progressbar(progressbar, img2img_preview)
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
with gr.Group():
switch_mode = gr.Radio(label='Mode', elem_id="img2img_mode", choices=['Redraw whole image', 'Inpaint a part of image', 'SD upscale'], value='Redraw whole image', type="index", show_label=False)
init_img = gr.Image(label="Image for img2img", source="upload", interactive=True, type="pil")
init_img_with_mask = gr.Image(label="Image for inpainting with mask", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", visible=False, image_mode="RGBA")
init_mask = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False)
init_img_with_mask_comment = gr.HTML(elem_id="mask_bug_info", value="<small>if the editor shows ERROR, switch to another tab and back, then to another img2img mode above and back</small>", visible=False)
with gr.Row(): with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize") with gr.TabItem('img2img'):
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask") init_img = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil")
with gr.TabItem('Inpaint'):
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA")
init_img_with_mask_comment = gr.HTML(elem_id="mask_bug_info", value="<small>if the editor shows ERROR, switch to another tab and back, then to \"Upload mask\" mode above and back</small>")
init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False)
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False)
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4)
with gr.Row():
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask")
inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index")
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index")
with gr.Row():
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False)
inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32)
with gr.TabItem('Batch img2img'):
gr.HTML("<p class=\"text-gray-500\">Process images in a directory on the same machine where the server is running.</p>")
img2img_batch_input_dir = gr.Textbox(label="Input directory")
img2img_batch_output_dir = gr.Textbox(label="Output directory")
with gr.Row():
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20) steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index") sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, visible=False)
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", visible=False)
with gr.Row():
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False, visible=False)
inpainting_mask_invert = gr.Radio(label='Masking mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", visible=False)
with gr.Row(): with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
tiling = gr.Checkbox(label='Tiling', value=False) tiling = gr.Checkbox(label='Tiling', value=False)
sd_upscale_overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False)
with gr.Row():
sd_upscale_upscaler_name = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", visible=False)
with gr.Row(): with gr.Row():
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
@ -589,7 +600,6 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
img2img_send_to_extras = gr.Button('Send to extras') img2img_send_to_extras = gr.Button('Send to extras')
img2img_save_style = gr.Button('Save prompt as style') img2img_save_style = gr.Button('Save prompt as style')
with gr.Group(): with gr.Group():
html_info = gr.HTML() html_info = gr.HTML()
generation_info = gr.Textbox(visible=False) generation_info = gr.Textbox(visible=False)
@ -597,70 +607,36 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
def apply_mode(mode, uploadmask): mask_mode.change(
is_classic = mode == 0 lambda mode, img: {
is_inpaint = mode == 1 #init_img_with_mask: gr.Image.update(visible=mode == 0, value=img["image"]),
is_upscale = mode == 2 init_img_with_mask: gr_show(mode == 0),
init_img_with_mask_comment: gr_show(mode == 0),
return { init_img_inpaint: gr_show(mode == 1),
init_img: gr_show(not is_inpaint or (is_inpaint and uploadmask == 1)), init_mask_inpaint: gr_show(mode == 1),
init_img_with_mask: gr_show(is_inpaint and uploadmask == 0), },
init_img_with_mask_comment: gr_show(is_inpaint and uploadmask == 0), inputs=[mask_mode, init_img_with_mask],
init_mask: gr_show(is_inpaint and uploadmask == 1),
mask_mode: gr_show(is_inpaint),
mask_blur: gr_show(is_inpaint),
inpainting_fill: gr_show(is_inpaint),
sd_upscale_upscaler_name: gr_show(is_upscale),
sd_upscale_overlap: gr_show(is_upscale),
inpaint_full_res: gr_show(is_inpaint),
inpainting_mask_invert: gr_show(is_inpaint),
img2img_interrogate: gr_show(not is_inpaint),
}
switch_mode.change(
apply_mode,
inputs=[switch_mode, mask_mode],
outputs=[ outputs=[
init_img,
init_img_with_mask, init_img_with_mask,
init_img_with_mask_comment, init_img_with_mask_comment,
init_mask, init_img_inpaint,
mask_mode, init_mask_inpaint,
mask_blur,
inpainting_fill,
sd_upscale_upscaler_name,
sd_upscale_overlap,
inpaint_full_res,
inpainting_mask_invert,
img2img_interrogate,
]
)
mask_mode.change(
lambda mode: {
init_img: gr_show(mode == 1),
init_img_with_mask: gr_show(mode == 0),
init_mask: gr_show(mode == 1),
},
inputs=[mask_mode],
outputs=[
init_img,
init_img_with_mask,
init_mask,
], ],
) )
img2img_args = dict( img2img_args = dict(
fn=img2img, fn=img2img,
_js="submit", _js="submit_img2img",
inputs=[ inputs=[
dummy_component,
img2img_prompt, img2img_prompt,
img2img_negative_prompt, img2img_negative_prompt,
img2img_prompt_style, img2img_prompt_style,
img2img_prompt_style2, img2img_prompt_style2,
init_img, init_img,
init_img_with_mask, init_img_with_mask,
init_mask, init_img_inpaint,
init_mask_inpaint,
mask_mode, mask_mode,
steps, steps,
sampler_index, sampler_index,
@ -668,7 +644,6 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
inpainting_fill, inpainting_fill,
restore_faces, restore_faces,
tiling, tiling,
switch_mode,
batch_count, batch_count,
batch_size, batch_size,
cfg_scale, cfg_scale,
@ -678,10 +653,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
height, height,
width, width,
resize_mode, resize_mode,
sd_upscale_upscaler_name,
sd_upscale_overlap,
inpaint_full_res, inpaint_full_res,
inpaint_full_res_padding,
inpainting_mask_invert, inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
img2img_gallery, img2img_gallery,
@ -748,7 +724,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
with gr.Blocks(analytics_enabled=False) as extras_interface: with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
with gr.Tabs(): with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image'): with gr.TabItem('Single Image'):
image = gr.Image(label="Source", source="upload", interactive=True, type="pil") image = gr.Image(label="Source", source="upload", interactive=True, type="pil")
@ -778,9 +754,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
html_info_x = gr.HTML() html_info_x = gr.HTML()
html_info = gr.HTML() html_info = gr.HTML()
extras_args = dict( submit.click(
fn=run_extras, fn=run_extras,
_js="get_extras_tab_index",
inputs=[ inputs=[
dummy_component,
image, image,
image_batch, image_batch,
gfpgan_visibility, gfpgan_visibility,
@ -798,8 +776,6 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
] ]
) )
submit.click(**extras_args)
pnginfo_interface = gr.Interface( pnginfo_interface = gr.Interface(
wrap_gradio_call(run_pnginfo), wrap_gradio_call(run_pnginfo),
inputs=[ inputs=[
@ -929,6 +905,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
outputs=[init_img_with_mask], outputs=[init_img_with_mask],
) )
tabs_img2img_mode.change(
fn=lambda x: x,
inputs=[init_img_with_mask],
outputs=[init_img_with_mask],
)
send_to_img2img.click( send_to_img2img.click(
fn=lambda x: image_from_url_text(x), fn=lambda x: image_from_url_text(x),
_js="extract_image_from_gallery_img2img", _js="extract_image_from_gallery_img2img",

View File

@ -1,59 +0,0 @@
import math
import os
import sys
import traceback
import modules.scripts as scripts
import gradio as gr
from modules.processing import Processed, process_images
from PIL import Image
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def title(self):
return "Batch processing"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
input_dir = gr.Textbox(label="Input directory", lines=1)
output_dir = gr.Textbox(label="Output directory", lines=1)
return [input_dir, output_dir]
def run(self, p, input_dir, output_dir):
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
batch_count = math.ceil(len(images) / p.batch_size)
print(f"Will process {len(images)} images in {batch_count} batches.")
p.batch_count = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
state.job_count = batch_count
for batch_no in range(batch_count):
batch_images = []
for path in images[batch_no*p.batch_size:(batch_no+1)*p.batch_size]:
try:
img = Image.open(path)
batch_images.append((img, path))
except:
print(f"Error processing {path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if len(batch_images) == 0:
continue
state.job = f"{batch_no} out of {batch_count}: {batch_images[0][1]}"
p.init_images = [x[0] for x in batch_images]
proc = process_images(p)
for image, (_, path) in zip(proc.images, batch_images):
filename = os.path.basename(path)
image.save(os.path.join(output_dir, filename))
return Processed(p, [], p.seed, "")

93
scripts/sd_upscale.py Normal file
View File

@ -0,0 +1,93 @@
import math
import modules.scripts as scripts
import gradio as gr
from PIL import Image
from modules import processing, shared, sd_samplers, images, devices
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def title(self):
return "SD upscale"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image to twice the dimensions; use width and height sliders to set tile size</p>")
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False)
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", visible=False)
return [info, overlap, upscaler_index]
def run(self, p, _, overlap, upscaler_index):
processing.fix_seed(p)
upscaler = shared.sd_upscalers[upscaler_index]
p.extra_generation_params["SD upscale overlap"] = overlap
p.extra_generation_params["SD upscale upscaler"] = upscaler.name
initial_info = None
seed = p.seed
init_img = p.init_images[0]
img = upscaler.upscale(init_img, init_img.width * 2, init_img.height * 2)
devices.torch_gc()
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
batch_size = p.batch_size
upscale_count = p.n_iter
p.n_iter = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
work = []
for y, h, row in grid.tiles:
for tiledata in row:
work.append(tiledata[2])
batch_count = math.ceil(len(work) / batch_size)
state.job_count = batch_count * upscale_count
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
result_images = []
for n in range(upscale_count):
start_seed = seed + n
p.seed = start_seed
work_results = []
for i in range(batch_count):
p.batch_size = batch_size
p.init_images = work[i*batch_size:(i+1)*batch_size]
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
processed = processing.process_images(p)
if initial_info is None:
initial_info = processed.info
p.seed = processed.seed + 1
work_results += processed.images
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
image_index += 1
combined_image = images.combine_grid(grid)
result_images.append(combined_image)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, result_images, seed, initial_info)
return processed

View File

@ -97,6 +97,11 @@
background: transparent; background: transparent;
} }
.my-4{
margin-top: 0;
margin-bottom: 0;
}
#toprow div{ #toprow div{
border: none; border: none;
gap: 0; gap: 0;
@ -198,7 +203,8 @@ input[type="range"]{
#mask_bug_info { #mask_bug_info {
text-align: center; text-align: center;
display: block; display: block;
margin-bottom: 0.5em; margin-top: -0.75em;
margin-bottom: -0.75em;
} }
#txt2img_negative_prompt, #img2img_negative_prompt{ #txt2img_negative_prompt, #img2img_negative_prompt{