diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 2339de7f..a5fb8907 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -243,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) - except: + except Exception: pass log["sample"] = x_sample diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index da19cff1..e8dc083c 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url from modules.upscaler import Upscaler, UpscalerData from ldsr_model_arch import LDSR from modules import shared, script_callbacks -import sd_hijack_autoencoder, sd_hijack_ddpm_v1 +import sd_hijack_autoencoder +import sd_hijack_ddpm_v1 class UpscalerLDSR(Upscaler): diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index db2231dd..6303fed5 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -1,16 +1,21 @@ # The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder - +import numpy as np import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager + +from torch.optim.lr_scheduler import LambdaLR + +from ldm.modules.ema import LitEma from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.util import instantiate_from_config import ldm.models.autoencoder +from packaging import version class VQModel(pl.LightningModule): def __init__(self, @@ -249,7 +254,8 @@ class VQModel(pl.LightningModule): if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) + if x.shape[1] > 3: + xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 5c0488e5..4d3f6c56 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -450,7 +450,7 @@ class LatentDiffusionV1(DDPMV1): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 43ca8d36..8028918a 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -61,7 +61,9 @@ class WMSA(nn.Module): Returns: output: tensor shape [b h w c] """ - if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + if self.type != 'W': + x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) @@ -85,8 +87,9 @@ class WMSA(nn.Module): output = self.linear(output) output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) - if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), - dims=(1, 2)) + if self.type != 'W': + output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2)) + return output def relative_embedding(self): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index e8783bca..d77c3a92 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -45,7 +45,7 @@ class UpscalerSwinIR(Upscaler): img = upscale(img, model) try: torch.cuda.empty_cache() - except: + except Exception: pass return img diff --git a/modules/api/api.py b/modules/api/api.py index d47c39fc..f52d371b 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,7 +15,8 @@ from secrets import compare_digest import modules.shared as shared from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing -from modules.api.models import * +from modules.api import models +from modules.shared import opts from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.preprocess import preprocess @@ -25,20 +26,21 @@ from modules.sd_models import checkpoints_list, unload_model_weights, reload_mod from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices -from typing import List +from typing import Dict, List, Any import piexif import piexif.helper + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") + except Exception: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except: + except Exception: raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): @@ -99,7 +101,7 @@ def api_middleware(app: FastAPI): import starlette # importing just so it can be placed on silent list from rich.console import Console console = Console() - except: + except Exception: import traceback rich_available = False @@ -166,36 +168,36 @@ class Api: self.app = app self.queue_lock = queue_lock api_middleware(self.app) - self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) - self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) - self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) - self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) - self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) - self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) - self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) - self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) - self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) - self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) - self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) - self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem]) - self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) + self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) - self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) - self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) + self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) + self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) - self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList) + self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.default_script_arg_txt2img = [] self.default_script_arg_img2img = [] @@ -224,7 +226,7 @@ class Api: t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] - return ScriptsList(txt2img = t2ilist, img2img = i2ilist) + return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) def get_script(self, script_name, script_runner): if script_name is None or script_name == "": @@ -276,7 +278,7 @@ class Api: script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] return script_args - def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): script_runner = scripts.scripts_txt2img if not script_runner.scripts: script_runner.initialize_scripts(False) @@ -320,9 +322,9 @@ class Api: b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] - return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) - def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -381,9 +383,9 @@ class Api: img2imgreq.init_images = None img2imgreq.mask = None - return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) - def extras_single_image_api(self, req: ExtrasSingleImageRequest): + def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): reqDict = setUpscalers(req) reqDict['image'] = decode_base64_to_image(reqDict['image']) @@ -391,9 +393,9 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) - def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): reqDict = setUpscalers(req) image_list = reqDict.pop('imageList', []) @@ -402,15 +404,15 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) - def pnginfoapi(self, req: PNGInfoRequest): + def pnginfoapi(self, req: models.PNGInfoRequest): if(not req.image.strip()): - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") image = decode_base64_to_image(req.image.strip()) if image is None: - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") geninfo, items = images.read_info_from_image(image) if geninfo is None: @@ -418,13 +420,13 @@ class Api: items = {**{'parameters': geninfo}, **items} - return PNGInfoResponse(info=geninfo, items=items) + return models.PNGInfoResponse(info=geninfo, items=items) - def progressapi(self, req: ProgressRequest = Depends()): + def progressapi(self, req: models.ProgressRequest = Depends()): # copy from check_progress_call of ui.py if shared.state.job_count == 0: - return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) # avoid dividing zero progress = 0.01 @@ -446,9 +448,9 @@ class Api: if shared.state.current_image and not req.skip_current_image: current_image = encode_pil_to_base64(shared.state.current_image) - return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) - def interrogateapi(self, interrogatereq: InterrogateRequest): + def interrogateapi(self, interrogatereq: models.InterrogateRequest): image_b64 = interrogatereq.image if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") @@ -465,7 +467,7 @@ class Api: else: raise HTTPException(status_code=404, detail="Model not found") - return InterrogateResponse(caption=processed) + return models.InterrogateResponse(caption=processed) def interruptapi(self): shared.state.interrupt() @@ -570,36 +572,36 @@ class Api: filename = create_embedding(**args) # create empty embedding sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used shared.state.end() - return CreateResponse(info=f"create embedding filename: {filename}") + return models.CreateResponse(info=f"create embedding filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create embedding error: {e}") + return models.TrainResponse(info=f"create embedding error: {e}") def create_hypernetwork(self, args: dict): try: shared.state.begin() filename = create_hypernetwork(**args) # create empty embedding shared.state.end() - return CreateResponse(info=f"create hypernetwork filename: {filename}") + return models.CreateResponse(info=f"create hypernetwork filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create hypernetwork error: {e}") + return models.TrainResponse(info=f"create hypernetwork error: {e}") def preprocess(self, args: dict): try: shared.state.begin() preprocess(**args) # quick operation unless blip/booru interrogation is enabled shared.state.end() - return PreprocessResponse(info = 'preprocess complete') + return models.PreprocessResponse(info = 'preprocess complete') except KeyError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: invalid token: {e}") + return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") except AssertionError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: {e}") + return models.PreprocessResponse(info=f"preprocess error: {e}") except FileNotFoundError as e: shared.state.end() - return PreprocessResponse(info=f'preprocess error: {e}') + return models.PreprocessResponse(info=f'preprocess error: {e}') def train_embedding(self, args: dict): try: @@ -617,10 +619,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info=f"train embedding error: {msg}") + return models.TrainResponse(info=f"train embedding error: {msg}") def train_hypernetwork(self, args: dict): try: @@ -641,14 +643,15 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError: shared.state.end() - return TrainResponse(info=f"train embedding error: {error}") + return models.TrainResponse(info=f"train embedding error: {error}") def get_memory(self): try: - import os, psutil + import os + import psutil process = psutil.Process(os.getpid()) res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe @@ -675,10 +678,10 @@ class Api: 'events': warnings, } else: - cuda = { 'error': 'unavailable' } + cuda = {'error': 'unavailable'} except Exception as err: - cuda = { 'error': f'{err}' } - return MemoryResponse(ram = ram, cuda = cuda) + cuda = {'error': f'{err}'} + return models.MemoryResponse(ram=ram, cuda=cuda) def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py index 4a70f440..4d291076 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -223,8 +223,9 @@ for key in _options: if(_options[key].dest != 'help'): flag = _options[key] _type = str - if _options[key].default is not None: _type = type(_options[key].default) - flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) + if _options[key].default is not None: + _type = type(_options[key].default) + flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))}) FlagsModel = create_model("Flags", **flags) diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 11dcc3ee..f1a7cf09 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -7,7 +7,7 @@ from torch import nn, Tensor import torch.nn.functional as F from typing import Optional, List -from modules.codeformer.vqgan_arch import * +from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 6071fea7..7f8bc7c0 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -438,9 +438,11 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias= padding = padding if pad_type == 'zero' else 0 if convtype=='PartialConv2D': + from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='DeformConv2D': + from torchvision.ops import DeformConv2d # not tested c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='Conv3D': diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 04f27c9f..aa2a14ef 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -1,4 +1,4 @@ -from modules import extra_networks, shared, extra_networks +from modules import extra_networks, shared from modules.hypernetworks import hypernetwork diff --git a/modules/images.py b/modules/images.py index 3d5d76cc..5eb6d855 100644 --- a/modules/images.py +++ b/modules/images.py @@ -472,9 +472,9 @@ def get_next_sequence_number(path, basename): prefix_length = len(basename) for p in os.listdir(path): if p.startswith(basename): - l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) + parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) try: - result = max(int(l[0]), result) + result = max(int(parts[0]), result) except ValueError: pass diff --git a/modules/img2img.py b/modules/img2img.py index cdae301a..32b1ecd6 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -13,7 +13,6 @@ from modules.shared import opts, state import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html -import modules.images as images import modules.scripts diff --git a/modules/interrogate.py b/modules/interrogate.py index 9f7d657f..22df9216 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -11,7 +11,6 @@ import torch.hub from torchvision import transforms from torchvision.transforms.functional import InterpolationMode -import modules.shared as shared from modules import devices, paths, shared, lowvram, modelloader, errors blip_image_eval_size = 384 diff --git a/modules/modelloader.py b/modules/modelloader.py index cb85ac4f..cf685000 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -108,12 +108,12 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None): print(f"Moving {file} from {src_path} to {dest_path}.") try: shutil.move(fullpath, dest_path) - except: + except Exception: pass if len(os.listdir(src_path)) == 0: print(f"Removing empty folder: {src_path}") shutil.rmtree(src_path, True) - except: + except Exception: pass @@ -141,7 +141,7 @@ def load_upscalers(): full_model = f"modules.{model_name}_model" try: importlib.import_module(full_model) - except: + except Exception: pass datas = [] diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f880bc3c..611c2b69 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -479,7 +479,7 @@ class LatentDiffusion(DDPM): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -891,16 +891,6 @@ class LatentDiffusion(DDPM): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1171,8 +1161,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1219,8 +1211,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1337,7 +1331,7 @@ class LatentDiffusion(DDPM): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index a241c8a7..0a9defa1 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -54,7 +54,8 @@ class UniPCSampler(object): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] + while isinstance(ctmp, list): + ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") diff --git a/modules/processing.py b/modules/processing.py index 1a76e552..6f5233c1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -664,7 +664,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not shared.opts.dont_fix_second_order_samplers_schedule: try: step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1 - except: + except Exception: pass uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc) c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c) diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index e084e948..3a720721 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -54,18 +54,21 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): """ def collect_steps(steps, tree): - l = [steps] + res = [steps] + class CollectSteps(lark.Visitor): def scheduled(self, tree): tree.children[-1] = float(tree.children[-1]) if tree.children[-1] < 1: tree.children[-1] *= steps tree.children[-1] = min(steps, int(tree.children[-1])) - l.append(tree.children[-1]) + res.append(tree.children[-1]) + def alternate(self, tree): - l.extend(range(1, steps+1)) + res.extend(range(1, steps+1)) + CollectSteps().visit(tree) - return sorted(set(l)) + return sorted(set(res)) def at_step(step, tree): class AtStep(lark.Transformer): diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index ba1bdcd4..d7d8d2e3 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -185,7 +185,7 @@ def image_face_points(im, settings): try: faces = classifier.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) - except: + except Exception: continue if len(faces) > 0: diff --git a/modules/ui.py b/modules/ui.py index 2171f3aa..6beda76f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1,15 +1,9 @@ -import html import json -import math import mimetypes import os -import platform -import random import sys -import tempfile -import time import traceback -from functools import partial, reduce +from functools import reduce import warnings import gradio as gr diff --git a/modules/upscaler.py b/modules/upscaler.py index e2eaa730..0ad4fe99 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -45,7 +45,7 @@ class Upscaler: try: import cv2 self.can_tile = True - except: + except Exception: pass @abstractmethod