move some settings to the new Optimization page

add slider for token merging for img2img
rework StableDiffusionProcessing to have the token_merging_ratio field
fix a bug with applying png optimizations for live previews when they shouldn't be applied
This commit is contained in:
AUTOMATIC 2023-05-17 20:22:38 +03:00
parent f6c06e3ed2
commit 9fd6c1e343
4 changed files with 55 additions and 45 deletions

View File

@ -29,12 +29,6 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType from blendmodes.blend import blendLayers, BlendType
import tomesd
# add a logger for the processing module
logger = logging.getLogger(__name__)
# manually set output level here since there is no option to do so yet through launch options
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s')
# some of those options should not be changed at all because they would break the model, so I removed them from options. # some of those options should not be changed at all because they would break the model, so I removed them from options.
@ -156,6 +150,8 @@ class StableDiffusionProcessing:
self.override_settings_restore_afterwards = override_settings_restore_afterwards self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.is_using_inpainting_conditioning = False self.is_using_inpainting_conditioning = False
self.disable_extra_networks = False self.disable_extra_networks = False
self.token_merging_ratio = 0
self.token_merging_ratio_hr = 0
if not seed_enable_extras: if not seed_enable_extras:
self.subseed = -1 self.subseed = -1
@ -171,6 +167,7 @@ class StableDiffusionProcessing:
self.all_subseeds = None self.all_subseeds = None
self.iteration = 0 self.iteration = 0
self.is_hr_pass = False self.is_hr_pass = False
self.sampler = None
@property @property
@ -280,6 +277,12 @@ class StableDiffusionProcessing:
def close(self): def close(self):
self.sampler = None self.sampler = None
def get_token_merging_ratio(self, for_hr=False):
if for_hr:
return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
return self.token_merging_ratio or opts.token_merging_ratio
class Processed: class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""): def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
@ -309,6 +312,8 @@ class Processed:
self.styles = p.styles self.styles = p.styles
self.job_timestamp = state.job_timestamp self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers self.clip_skip = opts.CLIP_stop_at_last_layers
self.token_merging_ratio = p.token_merging_ratio
self.token_merging_ratio_hr = p.token_merging_ratio_hr
self.eta = p.eta self.eta = p.eta
self.ddim_discretize = p.ddim_discretize self.ddim_discretize = p.ddim_discretize
@ -367,6 +372,9 @@ class Processed:
def infotext(self, p: StableDiffusionProcessing, index): def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3 # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high): def slerp(val, low, high):
@ -480,6 +488,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
enable_hr = getattr(p, 'enable_hr', False) enable_hr = getattr(p, 'enable_hr', False)
token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
uses_ensd = opts.eta_noise_seed_delta != 0 uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd: if uses_ensd:
@ -502,8 +512,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip, "Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": opts.eta_noise_seed_delta if uses_ensd else None, "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
"Token merging ratio": None if opts.token_merging_ratio == 0 else opts.token_merging_ratio, "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or opts.token_merging_ratio_hr == 0 else opts.token_merging_ratio_hr, "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None), "Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None, "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
@ -536,17 +546,12 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if k == 'sd_vae': if k == 'sd_vae':
sd_vae.reload_vae_weights() sd_vae.reload_vae_weights()
if opts.token_merging_ratio > 0: sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
sd_models.apply_token_merging(sd_model=p.sd_model, hr=False)
logger.debug(f"Token merging applied to first pass. Ratio: '{opts.token_merging_ratio}'")
res = process_images_inner(p) res = process_images_inner(p)
finally: finally:
# undo model optimizations made by tomesd sd_models.apply_token_merging(p.sd_model, 0)
if opts.token_merging_ratio > 0:
tomesd.remove_patch(p.sd_model)
logger.debug('Token merging model optimizations removed')
# restore opts to original state # restore opts to original state
if p.override_settings_restore_afterwards: if p.override_settings_restore_afterwards:
@ -996,21 +1001,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None x = None
devices.torch_gc() devices.torch_gc()
# apply token merging optimizations from tomesd for high-res pass sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
if opts.token_merging_ratio_hr > 0:
# in case the user has used separate merge ratios
if opts.token_merging_ratio > 0:
tomesd.remove_patch(self.sd_model)
logger.debug('Adjusting token merging ratio for high-res pass')
sd_models.apply_token_merging(sd_model=self.sd_model, hr=True)
logger.debug(f"Applied token merging for high-res pass. Ratio: '{opts.token_merging_ratio_hr}'")
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
if opts.token_merging_ratio_hr > 0 or opts.token_merging_ratio > 0: sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
tomesd.remove_patch(self.sd_model)
logger.debug('Removed token merging optimizations from model')
self.is_hr_pass = False self.is_hr_pass = False
@ -1173,3 +1168,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
devices.torch_gc() devices.torch_gc()
return samples return samples
def get_token_merging_ratio(self, for_hr=False):
return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio

View File

@ -98,7 +98,11 @@ def progressapi(req: ProgressRequest):
if opts.live_previews_image_format == "png": if opts.live_previews_image_format == "png":
# using optimize for large images takes an enormous amount of time # using optimize for large images takes an enormous amount of time
save_kwargs = {"optimize": max(*image.size) > 256} if max(*image.size) <= 256:
save_kwargs = {"optimize": True}
else:
save_kwargs = {"optimize": False, "compress_level": 1}
else: else:
save_kwargs = {} save_kwargs = {}

View File

@ -583,23 +583,27 @@ def unload_model_weights(sd_model=None, info=None):
return sd_model return sd_model
def apply_token_merging(sd_model, hr: bool): def apply_token_merging(sd_model, token_merging_ratio):
""" """
Applies speed and memory optimizations from tomesd. Applies speed and memory optimizations from tomesd.
Args:
hr (bool): True if called in the context of a high-res pass
""" """
ratio = shared.opts.token_merging_ratio current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
if hr:
ratio = shared.opts.token_merging_ratio_hr
if current_token_merging_ratio == token_merging_ratio:
return
if current_token_merging_ratio > 0:
tomesd.remove_patch(sd_model)
if token_merging_ratio > 0:
tomesd.apply_patch( tomesd.apply_patch(
sd_model, sd_model,
ratio=ratio, ratio=token_merging_ratio,
use_rand=False, # can cause issues with some samplers use_rand=False, # can cause issues with some samplers
merge_attn=True, merge_attn=True,
merge_crossattn=False, merge_crossattn=False,
merge_mlp=False merge_mlp=False
) )
sd_model.applied_token_merged_ratio = token_merging_ratio

View File

@ -413,8 +413,13 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"), "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"),
}))
options_templates.update(options_section(('optimizations', "Optimizations"), {
"s_min_uncond": OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_hr": OptionInfo(0.0, "Togen merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}), "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
})) }))
options_templates.update(options_section(('compatibility', "Compatibility"), { options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -498,7 +503,6 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
"eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"), "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
"eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"), "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),