From a005fccddd5a37c57f1afe5234660b59b9a41508 Mon Sep 17 00:00:00 2001 From: me <25877290+Kryptortio@users.noreply.github.com> Date: Sun, 1 Jan 2023 14:51:12 +0100 Subject: [PATCH] Add a lot more elem_id/HTML id, modified some that were duplicates for seed section --- modules/generation_parameters_copypaste.py | 2 +- modules/ui.py | 252 ++++++++++----------- style.css | 12 +- 3 files changed, 133 insertions(+), 133 deletions(-) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 54b3372d..8e7f0df0 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -93,7 +93,7 @@ def integrate_settings_paste_fields(component_dict): def create_buttons(tabs_list): buttons = {} for tab in tabs_list: - buttons[tab] = gr.Button(f"Send to {tab}") + buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab") return buttons diff --git a/modules/ui.py b/modules/ui.py index 27da2c2c..7070ea15 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -272,17 +272,17 @@ def interrogate_deepbooru(image): return gr_show(True) if prompt is None else prompt -def create_seed_inputs(): +def create_seed_inputs(target_interface): with gr.Row(): with gr.Box(): - with gr.Row(elem_id='seed_row'): - seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1) + with gr.Row(elem_id=target_interface + '_seed_row'): + seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed') seed.style(container=False) - random_seed = gr.Button(random_symbol, elem_id='random_seed') - reuse_seed = gr.Button(reuse_symbol, elem_id='reuse_seed') + random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed') + reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed') - with gr.Box(elem_id='subseed_show_box'): - seed_checkbox = gr.Checkbox(label='Extra', elem_id='subseed_show', value=False) + with gr.Box(elem_id=target_interface + '_subseed_show_box'): + seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False) # Components to show/hide based on the 'Extra' checkbox seed_extras = [] @@ -290,17 +290,17 @@ def create_seed_inputs(): with gr.Row(visible=False) as seed_extra_row_1: seed_extras.append(seed_extra_row_1) with gr.Box(): - with gr.Row(elem_id='subseed_row'): - subseed = gr.Number(label='Variation seed', value=-1) + with gr.Row(elem_id=target_interface + '_subseed_row'): + subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed') subseed.style(container=False) - random_subseed = gr.Button(random_symbol, elem_id='random_subseed') - reuse_subseed = gr.Button(reuse_symbol, elem_id='reuse_subseed') - subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01) + random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed') + reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed') + subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength') with gr.Row(visible=False) as seed_extra_row_2: seed_extras.append(seed_extra_row_2) - seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0) - seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0) + seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w') + seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h') random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed]) random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed]) @@ -678,28 +678,28 @@ def create_ui(): steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img") with gr.Group(): - width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512) - height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512) + width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") + height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") with gr.Row(): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) - tiling = gr.Checkbox(label='Tiling', value=False) - enable_hr = gr.Checkbox(label='Highres. fix', value=False) + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") + tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") + enable_hr = gr.Checkbox(label='Highres. fix', value=False, elem_id="txt2img_enable_hr") with gr.Row(visible=False) as hr_options: - firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0) - firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0) - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) + firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0, elem_id="txt2img_firstphase_width") + firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0, elem_id="txt2img_firstphase_height") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") with gr.Row(equal_height=True): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") - cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0) + cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale") - seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs() + seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img') - with gr.Group(): + with gr.Group(elem_id="txt2img_script_container"): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) @@ -821,10 +821,10 @@ def create_ui(): with gr.Column(variant='panel', elem_id="img2img_settings"): with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode: - with gr.TabItem('img2img', id='img2img'): + with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"): init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480) - with gr.TabItem('Inpaint', id='inpaint'): + with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"): init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480) init_img_with_mask_orig = gr.State(None) @@ -843,24 +843,24 @@ def create_ui(): init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") with gr.Row(): - mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4) - mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch) + mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur") + mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha") with gr.Row(): mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode") - inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index") + inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode") - inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index") + inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill") with gr.Row(): - inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False) - inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32) + inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False, elem_id="img2img_inpaint_full_res") + inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding") - with gr.TabItem('Batch img2img', id='batch'): + with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"): hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else '' gr.HTML(f"

Process images in a directory on the same machine where the server is running.
Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}

") - img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs) - img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs) + img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") + img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") with gr.Row(): resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") @@ -872,20 +872,20 @@ def create_ui(): height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") with gr.Row(): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) - tiling = gr.Checkbox(label='Tiling', value=False) + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") + tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") with gr.Row(): - batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) - batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") with gr.Group(): - cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0) - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75) + cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") - seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs() + seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') - with gr.Group(): + with gr.Group(elem_id="img2img_script_container"): custom_inputs = modules.scripts.scripts_img2img.setup_ui() img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) @@ -1032,45 +1032,45 @@ def create_ui(): with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Tabs(elem_id="mode_extras"): - with gr.TabItem('Single Image'): - extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil") + with gr.TabItem('Single Image', elem_id="extras_single_tab"): + extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image") - with gr.TabItem('Batch Process'): - image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file") + with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"): + image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch") - with gr.TabItem('Batch from Directory'): - extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.") - extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.") - show_extras_results = gr.Checkbox(label='Show result images', value=True) + with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"): + extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir") + extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir") + show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results") submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') with gr.Tabs(elem_id="extras_resize_mode"): - with gr.TabItem('Scale by'): - upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4) - with gr.TabItem('Scale to'): + with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"): + upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize") + with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"): with gr.Group(): with gr.Row(): - upscaling_resize_w = gr.Number(label="Width", value=512, precision=0) - upscaling_resize_h = gr.Number(label="Height", value=512, precision=0) - upscaling_crop = gr.Checkbox(label='Crop to fit', value=True) + upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w") + upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h") + upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop") with gr.Group(): extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") with gr.Group(): extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") - extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1) + extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility") with gr.Group(): - gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan) + gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility") with gr.Group(): - codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) - codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer) + codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility") + codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight") with gr.Group(): - upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False) + upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix") result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples) @@ -1117,7 +1117,7 @@ def create_ui(): with gr.Column(variant='panel'): html = gr.HTML() - generation_info = gr.Textbox(visible=False) + generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info") html2 = gr.HTML() with gr.Row(): buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) @@ -1144,13 +1144,13 @@ def create_ui(): tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)") create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C") - custom_name = gr.Textbox(label="Custom Name (Optional)") - interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3) - interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method") + custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name") + interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount") + interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method") with gr.Row(): - checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format") - save_as_half = gr.Checkbox(value=False, label="Save as float16") + checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format") + save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half") modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') @@ -1165,58 +1165,58 @@ def create_ui(): with gr.Tabs(elem_id="train_tabs"): with gr.Tab(label="Create embedding"): - new_embedding_name = gr.Textbox(label="Name") - initialization_text = gr.Textbox(label="Initialization text", value="*") - nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1) - overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding") + new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name") + initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text") + nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt") + overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding") with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") with gr.Column(): - create_embedding = gr.Button(value="Create embedding", variant='primary') + create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding") with gr.Tab(label="Create hypernetwork"): - new_hypernetwork_name = gr.Textbox(label="Name") - new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"]) - new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'") - new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys) - new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"]) - new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") - new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout") - overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork") + new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name") + new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes") + new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure") + new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func") + new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") + new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") + new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") + overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") with gr.Column(): - create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary') + create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork") with gr.Tab(label="Preprocess images"): - process_src = gr.Textbox(label='Source directory') - process_dst = gr.Textbox(label='Destination directory') - process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512) - process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512) - preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"]) + process_src = gr.Textbox(label='Source directory', elem_id="train_process_src") + process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst") + process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width") + process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height") + preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action") with gr.Row(): - process_flip = gr.Checkbox(label='Create flipped copies') - process_split = gr.Checkbox(label='Split oversized images') - process_focal_crop = gr.Checkbox(label='Auto focal point crop') - process_caption = gr.Checkbox(label='Use BLIP for caption') - process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True) + process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip") + process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split") + process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop") + process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption") + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru") with gr.Row(visible=False) as process_split_extra_row: - process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05) - process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05) + process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold") + process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio") with gr.Row(visible=False) as process_focal_crop_row: - process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05) - process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05) - process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05) - process_focal_crop_debug = gr.Checkbox(label='Create debug image') + process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight") + process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") + process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") + process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") with gr.Row(): with gr.Column(scale=3): @@ -1224,8 +1224,8 @@ def create_ui(): with gr.Column(): with gr.Row(): - interrupt_preprocessing = gr.Button("Interrupt") - run_preprocess = gr.Button(value="Preprocess", variant='primary') + interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing") + run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess") process_split.change( fn=lambda show: gr_show(show), @@ -1248,31 +1248,31 @@ def create_ui(): train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") with gr.Row(): - embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005") - hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001") + embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") + hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - batch_size = gr.Number(label='Batch size', value=1, precision=0) - gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0) - dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") - log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") - template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) - training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512) - training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512) - steps = gr.Number(label='Max steps', value=100000, precision=0) - create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) - save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) - save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) - preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) + batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") + gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") + dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") + log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") + template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"), elem_id="train_template_file") + training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") + training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") + steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") + create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") + save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") + save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") + preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") with gr.Row(): - shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False) - tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0) + shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") + tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") with gr.Row(): - latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random']) + latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") with gr.Row(): - interrupt_training = gr.Button(value="Interrupt") - train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') - train_embedding = gr.Button(value="Train Embedding", variant='primary') + interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") + train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") + train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") params = script_callbacks.UiTrainTabParams(txt2img_preview_params) @@ -1490,7 +1490,7 @@ def create_ui(): return gr.update(value=value), opts.dumpjson() with gr.Blocks(analytics_enabled=False) as settings_interface: - settings_submit = gr.Button(value="Apply settings", variant='primary') + settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit") result = gr.HTML() settings_cols = 3 @@ -1541,8 +1541,8 @@ def create_ui(): download_localization = gr.Button(value='Download localization template', elem_id="download_localization") with gr.Row(): - reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary') - restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary') + reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") + restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary', elem_id="settings_restart_gradio") request_notifications.click( fn=lambda: None, diff --git a/style.css b/style.css index f168571e..924d4ae7 100644 --- a/style.css +++ b/style.css @@ -73,7 +73,7 @@ margin-right: auto; } -#random_seed, #random_subseed, #reuse_seed, #reuse_subseed, #open_folder{ +[id$=_random_seed], [id$=_random_subseed], [id$=_reuse_seed], [id$=_reuse_subseed], #open_folder{ min-width: auto; flex-grow: 0; padding-left: 0.25em; @@ -84,27 +84,27 @@ display: none; } -#seed_row, #subseed_row{ +[id$=_seed_row], [id$=_subseed_row]{ gap: 0.5rem; } -#subseed_show_box{ +[id$=_subseed_show_box]{ min-width: auto; flex-grow: 0; } -#subseed_show_box > div{ +[id$=_subseed_show_box] > div{ border: 0; height: 100%; } -#subseed_show{ +[id$=_subseed_show]{ min-width: auto; flex-grow: 0; padding: 0; } -#subseed_show label{ +[id$=_subseed_show] label{ height: 100%; }