diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index b47414f3..d31963d4 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -118,6 +118,12 @@ class PersonalizedBase(Dataset): self.gradient_step = min(gradient_step, self.length // self.batch_size) self.latent_sampling_method = latent_sampling_method + if len(groups) > 1: + print("Buckets:") + for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]): + print(f" {w}x{h}: {len(ids)}") + print() + def create_text(self, filename_text): text = random.choice(self.lines) tags = filename_text.split(',') @@ -140,8 +146,11 @@ class PersonalizedBase(Dataset): entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu) return entry + class GroupedBatchSampler(Sampler): def __init__(self, data_source: PersonalizedBase, batch_size: int): + super().__init__(data_source) + n = len(data_source) self.groups = data_source.groups self.len = n_batch = n // batch_size @@ -150,21 +159,28 @@ class GroupedBatchSampler(Sampler): self.n_rand_batches = nrb = n_batch - sum(self.base) self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected] self.batch_size = batch_size + def __len__(self): return self.len + def __iter__(self): b = self.batch_size + for g in self.groups: shuffle(g) + batches = [] for g in self.groups: batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b)) for _ in range(self.n_rand_batches): rand_group = choices(self.groups, self.probs)[0] batches.append(choices(rand_group, k=b)) + shuffle(batches) + yield from batches + class PersonalizedDataLoader(DataLoader): def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False): super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory) diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index ea653806..5593f88c 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -76,10 +76,10 @@ def insert_image_data_embed(image, data): next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h)) next_size = next_size + ((h*d)-(next_size % (h*d))) - data_np_low.resize(next_size) + data_np_low = np.resize(data_np_low, next_size) data_np_low = data_np_low.reshape((h, -1, d)) - data_np_high.resize(next_size) + data_np_high = np.resize(data_np_high, next_size) data_np_high = data_np_high.reshape((h, -1, d)) edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024] diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 853246a6..e23906ca 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -479,7 +479,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ epoch_num = embedding.step // steps_per_epoch epoch_step = embedding.step % steps_per_epoch - description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}" + description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}" pbar.set_description(description) shared.state.textinfo = description if embedding_dir is not None and steps_done % save_embedding_every == 0: