diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index a5fb8907..27e38549 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -88,7 +88,7 @@ class LDSR: x_t = None logs = None - for n in range(n_runs): + for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 9795540f..7b56136f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -418,7 +418,7 @@ def infotext_pasted(infotext, params): added = [] - for k, v in params.items(): + for k in params: if not k.startswith("AddNet Model "): continue diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index aa2fdb3a..1f5ea0d3 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -132,7 +132,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(filename), strict=True) model.eval() - for k, v in model.named_parameters(): + for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 75f7bedc..de195d9b 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -848,7 +848,7 @@ class SwinIR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index d4c0b0da..15777af9 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -1001,7 +1001,7 @@ class Swin2SR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8e56cb89..ececdbae 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -94,7 +94,7 @@ def setup_model(dirname): self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(self.face_helper.cropped_faces): + for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 85aa6934..a009eb42 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -16,9 +16,7 @@ def mod2normal(state_dict): # this code is copied from https://github.com/victorca25/iNNfer if 'conv_first.weight' in state_dict: crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] @@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23): if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: re8x = 0 crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 1978673d..f9db41bc 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -91,7 +91,7 @@ def deactivate(p, extra_network_data): """call deactivate for extra networks in extra_network_data in specified order, then call deactivate for all remaining registered networks""" - for extra_network_name, extra_network_args in extra_network_data.items(): + for extra_network_name in extra_network_data: extra_network = extra_network_registry.get(extra_network_name, None) if extra_network is None: continue diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 7fbbe707..b0e945a1 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model lines.append(lastline) lastline = '' - for i, line in enumerate(lines): + for line in lines: line = line.strip() if line.startswith("Negative prompt:"): done_with_prompt = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6ef0bfdf..38ef074f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -177,34 +177,34 @@ class Hypernetwork: def weights(self): res = [] - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: res += layer.parameters() return res def train(self, mode=True): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.train(mode=mode) for param in layer.parameters(): param.requires_grad = mode def to(self, device): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.to(device) return self def set_multiplier(self, multiplier): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.multiplier = multiplier return self def eval(self): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.eval() for param in layer.parameters(): @@ -619,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/images.py b/modules/images.py index 7392cb8b..c4e98c75 100644 --- a/modules/images.py +++ b/modules/images.py @@ -149,7 +149,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): return ImageFont.truetype(Roboto, fontsize) def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): - for i, line in enumerate(lines): + for line in lines: fnt = initial_fnt fontsize = initial_fontsize while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: diff --git a/modules/interrogate.py b/modules/interrogate.py index a1c8e537..111b1322 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -207,8 +207,8 @@ class InterrogateModels: image_features /= image_features.norm(dim=-1, keepdim=True) - for name, topn, items in self.categories(): - matches = self.rank(image_features, items, top_count=topn) + for cat in self.categories(): + matches = self.rank(image_features, cat.items, top_count=cat.topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 3a720721..b4aff704 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -143,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps): conds = model.get_learned_conditioning(texts) cond_schedule = [] - for i, (end_at_step, text) in enumerate(prompt_schedule): + for i, (end_at_step, _) in enumerate(prompt_schedule): cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) cache[prompt] = cond_schedule @@ -219,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for i, cond_schedule in enumerate(c): target_index = 0 - for current, (end_at, cond) in enumerate(cond_schedule): - if current_step <= end_at: + for current, entry in enumerate(cond_schedule): + if current_step <= entry.end_at_step: target_index = current break res[i] = cond_schedule[target_index].cond @@ -234,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): tensors = [] conds_list = [] - for batch_no, composable_prompts in enumerate(c.batch): + for composable_prompts in c.batch: conds_for_batch = [] - for cond_index, composable_prompt in enumerate(composable_prompts): + for composable_prompt in composable_prompts: target_index = 0 - for current, (end_at, cond) in enumerate(composable_prompt.schedules): - if current_step <= end_at: + for current, entry in enumerate(composable_prompt.schedules): + if current_step <= entry.end_at_step: target_index = current break diff --git a/modules/safe.py b/modules/safe.py index 2d5b972f..1e791c5b 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -95,11 +95,11 @@ def check_pt(filename, extra_handler): except zipfile.BadZipfile: - # if it's not a zip file, it's an olf pytorch format, with five objects written to pickle + # if it's not a zip file, it's an old pytorch format, with five objects written to pickle with open(filename, "rb") as file: unpickler = RestrictedUnpickler(file) unpickler.extra_handler = extra_handler - for i in range(5): + for _ in range(5): unpickler.load() diff --git a/modules/scripts.py b/modules/scripts.py index d945b89f..0c12ebd5 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -231,7 +231,7 @@ def load_scripts(): syspath = sys.path def register_scripts_from_module(module): - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) != type: continue @@ -295,9 +295,9 @@ class ScriptRunner: auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() - for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: - script = script_class() - script.filename = path + for script_data in auto_processing_scripts + scripts_data: + script = script_data.script_class() + script.filename = script_data.path script.is_txt2img = not is_img2img script.is_img2img = is_img2img @@ -492,7 +492,7 @@ class ScriptRunner: module = script_loading.load_module(script.filename) cache[filename] = module - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) == type and issubclass(script_class, Script): self.scripts[si] = script_class() self.scripts[si].filename = filename diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index b11568c0..6751406c 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -66,9 +66,9 @@ class ScriptPostprocessingRunner: def initialize_scripts(self, scripts_data): self.scripts = [] - for script_class, path, basedir, script_module in scripts_data: - script: ScriptPostprocessing = script_class() - script.filename = path + for script_data in scripts_data: + script: ScriptPostprocessing = script_data.script_class() + script.filename = script_data.path if script.name == "Simple Upscale": continue @@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to] process_args = {} - for (name, component), value in zip(script.controls.items(), script_args): + for (name, component), value in zip(script.controls.items(), script_args): # noqa B007 process_args[name] = value script.process(pp, **process_args) diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9fa5c5c5..c0c350f6 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk] for fixes in self.hijack.fixes: - for position, embedding in fixes: + for position, embedding in fixes: # noqa: B007 used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) diff --git a/modules/shared.py b/modules/shared.py index e2691585..913c9e63 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -211,7 +211,7 @@ class OptionInfo: def options_section(section_identifier, options_dict): - for k, v in options_dict.items(): + for v in options_dict.values(): v.section = section_identifier return options_dict @@ -579,7 +579,7 @@ class Options: section_ids = {} settings_items = self.data_labels.items() - for k, item in settings_items: + for _, item in settings_items: if item.section not in section_ids: section_ids[item.section] = len(section_ids) @@ -740,7 +740,7 @@ def walk_files(path, allowed_extensions=None): if allowed_extensions is not None: allowed_extensions = set(allowed_extensions) - for root, dirs, files in os.walk(path): + for root, _, files in os.walk(path): for filename in files: if allowed_extensions is not None: _, ext = os.path.splitext(filename) diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index fda58898..c56bea45 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -12,7 +12,7 @@ class LearnScheduleIterator: self.it = 0 self.maxit = 0 try: - for i, pair in enumerate(pairs): + for pair in pairs: if not pair.strip(): continue tmp = pair.split(':') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c37bb2ad..47035332 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -29,7 +29,7 @@ textual_inversion_templates = {} def list_textual_inversion_templates(): textual_inversion_templates.clear() - for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): for fn in fns: path = os.path.join(root, fn) @@ -198,7 +198,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path): return - for root, dirs, fns in os.walk(embdir.path, followlinks=True): + for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) @@ -215,7 +215,7 @@ class EmbeddingDatabase: def load_textual_inversion_embeddings(self, force_reload=False): if not force_reload: need_reload = False - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): if embdir.has_changed(): need_reload = True break @@ -228,7 +228,7 @@ class EmbeddingDatabase: self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() @@ -469,7 +469,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/ui.py b/modules/ui.py index 84d661b2..83bfb7d8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -416,7 +416,7 @@ def create_sampler_and_steps_selection(choices, tabname): def ordered_ui_categories(): user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))} - for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): + for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): yield category @@ -1646,7 +1646,7 @@ def create_ui(): with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo: with gr.Row(elem_id="quicksettings", variant="compact"): - for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): + for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component @@ -1673,7 +1673,7 @@ def create_ui(): outputs=[text_settings, result], ) - for i, k, item in quicksettings_list: + for _i, k, _item in quicksettings_list: component = component_dict[k] info = opts.data_labels[k] diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index ab585917..2fd82e8e 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -90,7 +90,7 @@ class ExtraNetworksPage: subdirs = {} for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: - for root, dirs, files in os.walk(parentdir): + for root, dirs, _ in os.walk(parentdir): for dirname in dirs: x = os.path.join(root, dirname) diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index cac73c51..f05049e1 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -72,7 +72,7 @@ def cleanup_tmpdr(): if temp_dir == "" or not os.path.isdir(temp_dir): return - for root, dirs, files in os.walk(temp_dir, topdown=False): + for root, _, files in os.walk(temp_dir, topdown=False): for name in files: _, extension = os.path.splitext(name) if extension != ".png": diff --git a/modules/upscaler.py b/modules/upscaler.py index e145be30..8acb6e96 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -55,7 +55,7 @@ class Upscaler: dest_w = int(img.width * scale) dest_h = int(img.height * scale) - for i in range(3): + for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) diff --git a/pyproject.toml b/pyproject.toml index 346a0cde..c88907be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,7 +20,6 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - "B007", # Loop control variable not used within loop body ] diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 149bc85f..27af5ff6 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -156,7 +156,7 @@ class Script(scripts.Script): images = [] all_prompts = [] infotexts = [] - for n, args in enumerate(jobs): + for args in jobs: state.job = f"{state.job_no + 1} out of {state.job_count}" copy_p = copy.copy(p) diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index d873a09c..0b1d3096 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -56,7 +56,7 @@ class Script(scripts.Script): work = [] - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) @@ -85,7 +85,7 @@ class Script(scripts.Script): work_results += processed.images image_index = 0 - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) image_index += 1 diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 332e0ecd..38a20381 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -704,7 +704,7 @@ class Script(scripts.Script): if not include_sub_grids: # Done with sub-grids, drop all related information: - for sg in range(z_count): + for _ in range(z_count): del processed.images[1] del processed.all_prompts[1] del processed.all_seeds[1]