From ac2d47ff4c00b041cae3d882c2832662c2c64935 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Fri, 14 Jul 2023 20:27:41 +0300 Subject: [PATCH] add cheap VAE approximation coeffs for SDXL --- modules/sd_vae_approx.py | 22 ++++++++++++++++------ 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py index b348f3ae..86bd658a 100644 --- a/modules/sd_vae_approx.py +++ b/modules/sd_vae_approx.py @@ -64,12 +64,22 @@ def model(): def cheap_approximation(sample): # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2 - coefs = torch.tensor([ - [0.298, 0.207, 0.208], - [0.187, 0.286, 0.173], - [-0.158, 0.189, 0.264], - [-0.184, -0.271, -0.473], - ]).to(sample.device) + if shared.sd_model.is_sdxl: + coeffs = [ + [ 0.3448, 0.4168, 0.4395], + [-0.1953, -0.0290, 0.0250], + [ 0.1074, 0.0886, -0.0163], + [-0.3730, -0.2499, -0.2088], + ] + else: + coeffs = [ + [ 0.298, 0.207, 0.208], + [ 0.187, 0.286, 0.173], + [-0.158, 0.189, 0.264], + [-0.184, -0.271, -0.473], + ] + + coefs = torch.tensor(coeffs).to(sample.device) x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)