Label and load SD .safetensors model files
This commit is contained in:
parent
47a44c7e42
commit
ac7ecd2d84
@ -84,6 +84,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- API
|
||||
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||
- Can use safetensors to safely load model files without python pickle
|
||||
|
||||
## Where are Aesthetic Gradients?!?!
|
||||
Aesthetic Gradients are now an extension. You can install it using git:
|
||||
|
@ -82,6 +82,7 @@ def cleanup_models():
|
||||
src_path = models_path
|
||||
dest_path = os.path.join(models_path, "Stable-diffusion")
|
||||
move_files(src_path, dest_path, ".ckpt")
|
||||
move_files(src_path, dest_path, ".safetensors")
|
||||
src_path = os.path.join(root_path, "ESRGAN")
|
||||
dest_path = os.path.join(models_path, "ESRGAN")
|
||||
move_files(src_path, dest_path)
|
||||
|
@ -4,6 +4,7 @@ import sys
|
||||
import gc
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
import re
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
@ -16,9 +17,10 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp
|
||||
model_dir = "Stable-diffusion"
|
||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||
|
||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
|
||||
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config', 'exttype'])
|
||||
checkpoints_list = {}
|
||||
checkpoints_loaded = collections.OrderedDict()
|
||||
checkpoint_types = {'.ckpt':'pickle','.safetensors':'safetensors'}
|
||||
|
||||
try:
|
||||
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
||||
@ -45,7 +47,7 @@ def checkpoint_tiles():
|
||||
|
||||
def list_models():
|
||||
checkpoints_list.clear()
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt",".safetensors"])
|
||||
|
||||
def modeltitle(path, shorthash):
|
||||
abspath = os.path.abspath(path)
|
||||
@ -60,15 +62,15 @@ def list_models():
|
||||
if name.startswith("\\") or name.startswith("/"):
|
||||
name = name[1:]
|
||||
|
||||
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
|
||||
shortname, ext = os.path.splitext(name.replace("/", "_").replace("\\", "_"))
|
||||
|
||||
return f'{name} [{shorthash}]', shortname
|
||||
return f'{name} [{checkpoint_types[ext]}] [{shorthash}]', shortname
|
||||
|
||||
cmd_ckpt = shared.cmd_opts.ckpt
|
||||
if os.path.exists(cmd_ckpt):
|
||||
h = model_hash(cmd_ckpt)
|
||||
title, short_model_name = modeltitle(cmd_ckpt, h)
|
||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
|
||||
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config, '')
|
||||
shared.opts.data['sd_model_checkpoint'] = title
|
||||
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
||||
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
|
||||
@ -76,12 +78,12 @@ def list_models():
|
||||
h = model_hash(filename)
|
||||
title, short_model_name = modeltitle(filename, h)
|
||||
|
||||
basename, _ = os.path.splitext(filename)
|
||||
basename, ext = os.path.splitext(filename)
|
||||
config = basename + ".yaml"
|
||||
if not os.path.exists(config):
|
||||
config = shared.cmd_opts.config
|
||||
|
||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
|
||||
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config, ext)
|
||||
|
||||
|
||||
def get_closet_checkpoint_match(searchString):
|
||||
@ -173,7 +175,13 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
# load from file
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
if(checkpoint_types[checkpoint_info.exttype] == 'safetensors'):
|
||||
# safely load weights
|
||||
# TODO: safetensors supports zero copy fast load to gpu, see issue #684
|
||||
pl_sd = load_file(checkpoint_file, device=shared.weight_load_location)
|
||||
else:
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
|
||||
|
@ -28,3 +28,4 @@ kornia
|
||||
lark
|
||||
inflection
|
||||
GitPython
|
||||
safetensors
|
||||
|
Loading…
Reference in New Issue
Block a user