From ae17e97898af8dd776b20e104ba9a81fe699e4df Mon Sep 17 00:00:00 2001 From: Sakura-Luna <53183413+Sakura-Luna@users.noreply.github.com> Date: Thu, 11 May 2023 12:26:04 +0800 Subject: [PATCH] UniPC progress bar adjustment --- modules/models/diffusion/uni_pc/uni_pc.py | 70 ++++++++++++----------- 1 file changed, 37 insertions(+), 33 deletions(-) diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index eb5f4e76..1d1b07bd 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,7 +1,7 @@ import torch import torch.nn.functional as F import math -from tqdm.auto import trange +import tqdm class NoiseScheduleVP: @@ -757,40 +757,44 @@ class UniPC: vec_t = timesteps[0].expand((x.shape[0])) model_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] - # Init the first `order` values by lower order multistep DPM-Solver. - for init_order in range(1, order): - vec_t = timesteps[init_order].expand(x.shape[0]) - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) - if model_x is None: - model_x = self.model_fn(x, vec_t) - if self.after_update is not None: - self.after_update(x, model_x) - model_prev_list.append(model_x) - t_prev_list.append(vec_t) - for step in trange(order, steps + 1): - vec_t = timesteps[step].expand(x.shape[0]) - if lower_order_final: - step_order = min(order, steps + 1 - step) - else: - step_order = order - #print('this step order:', step_order) - if step == steps: - #print('do not run corrector at the last step') - use_corrector = False - else: - use_corrector = True - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) - if self.after_update is not None: - self.after_update(x, model_x) - for i in range(order - 1): - t_prev_list[i] = t_prev_list[i + 1] - model_prev_list[i] = model_prev_list[i + 1] - t_prev_list[-1] = vec_t - # We do not need to evaluate the final model value. - if step < steps: + with tqdm.tqdm(total=steps) as pbar: + # Init the first `order` values by lower order multistep DPM-Solver. + for init_order in range(1, order): + vec_t = timesteps[init_order].expand(x.shape[0]) + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) if model_x is None: model_x = self.model_fn(x, vec_t) - model_prev_list[-1] = model_x + if self.after_update is not None: + self.after_update(x, model_x) + model_prev_list.append(model_x) + t_prev_list.append(vec_t) + pbar.update() + + for step in range(order, steps + 1): + vec_t = timesteps[step].expand(x.shape[0]) + if lower_order_final: + step_order = min(order, steps + 1 - step) + else: + step_order = order + #print('this step order:', step_order) + if step == steps: + #print('do not run corrector at the last step') + use_corrector = False + else: + use_corrector = True + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) + if self.after_update is not None: + self.after_update(x, model_x) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = vec_t + # We do not need to evaluate the final model value. + if step < steps: + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list[-1] = model_x + pbar.update() else: raise NotImplementedError() if denoise_to_zero: