diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index fc0c94b4..2fb57b7d 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -23,6 +23,8 @@ samplers_k_diffusion = [ ('Heun', 'sample_heun', ['k_heun']), ('DPM2', 'sample_dpm_2', ['k_dpm_2']), ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']), + ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']), + ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']), ] samplers_data_k_diffusion = [ @@ -37,6 +39,8 @@ samplers = [ SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []), ] samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] +samplers_for_img2img.remove(samplers_for_img2img[6]) +samplers_for_img2img.remove(samplers_for_img2img[6]) sampler_extra_params = { 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], @@ -309,7 +313,12 @@ class KDiffusionSampler: x = x * sigmas[0] extra_params_kwargs = self.initialize(p) - + if 'sigma_min' in inspect.signature(self.func).parameters: + if 'n' in inspect.signature(self.func).parameters: + samples = self.func(self.model_wrap_cfg, x, sigma_min=self.model_wrap.sigmas[0].item(), sigma_max=self.model_wrap.sigmas[-1].item(), n=steps, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + return samples + samples = self.func(self.model_wrap_cfg, x, sigma_min=self.model_wrap.sigmas[0].item(), sigma_max=self.model_wrap.sigmas[-1].item(), extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + return samples samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) return samples