Merge pull request #7455 from brkirch/put-fix-back
Refactor MPS PyTorch fixes, add fix still required for PyTorch nightly builds back
This commit is contained in:
commit
b1873dbb77
@ -2,6 +2,7 @@ import sys, os, shlex
|
|||||||
import contextlib
|
import contextlib
|
||||||
import torch
|
import torch
|
||||||
from modules import errors
|
from modules import errors
|
||||||
|
from modules.sd_hijack_utils import CondFunc
|
||||||
from packaging import version
|
from packaging import version
|
||||||
|
|
||||||
|
|
||||||
@ -156,36 +157,7 @@ def test_for_nans(x, where):
|
|||||||
raise NansException(message)
|
raise NansException(message)
|
||||||
|
|
||||||
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
|
||||||
orig_tensor_to = torch.Tensor.to
|
|
||||||
def tensor_to_fix(self, *args, **kwargs):
|
|
||||||
if self.device.type != 'mps' and \
|
|
||||||
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
|
|
||||||
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
|
|
||||||
self = self.contiguous()
|
|
||||||
return orig_tensor_to(self, *args, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
|
|
||||||
orig_layer_norm = torch.nn.functional.layer_norm
|
|
||||||
def layer_norm_fix(*args, **kwargs):
|
|
||||||
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
|
|
||||||
args = list(args)
|
|
||||||
args[0] = args[0].contiguous()
|
|
||||||
return orig_layer_norm(*args, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
|
|
||||||
orig_tensor_numpy = torch.Tensor.numpy
|
|
||||||
def numpy_fix(self, *args, **kwargs):
|
|
||||||
if self.requires_grad:
|
|
||||||
self = self.detach()
|
|
||||||
return orig_tensor_numpy(self, *args, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
|
||||||
orig_cumsum = torch.cumsum
|
|
||||||
orig_Tensor_cumsum = torch.Tensor.cumsum
|
|
||||||
def cumsum_fix(input, cumsum_func, *args, **kwargs):
|
def cumsum_fix(input, cumsum_func, *args, **kwargs):
|
||||||
if input.device.type == 'mps':
|
if input.device.type == 'mps':
|
||||||
output_dtype = kwargs.get('dtype', input.dtype)
|
output_dtype = kwargs.get('dtype', input.dtype)
|
||||||
@ -199,11 +171,20 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs):
|
|||||||
if has_mps():
|
if has_mps():
|
||||||
if version.parse(torch.__version__) < version.parse("1.13"):
|
if version.parse(torch.__version__) < version.parse("1.13"):
|
||||||
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
||||||
torch.Tensor.to = tensor_to_fix
|
|
||||||
torch.nn.functional.layer_norm = layer_norm_fix
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||||
torch.Tensor.numpy = numpy_fix
|
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
|
||||||
|
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
|
||||||
|
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
|
||||||
|
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
|
||||||
|
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
|
||||||
|
CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad)
|
||||||
elif version.parse(torch.__version__) > version.parse("1.13.1"):
|
elif version.parse(torch.__version__) > version.parse("1.13.1"):
|
||||||
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
|
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
|
||||||
cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0))
|
cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0))
|
||||||
torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) )
|
cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs)
|
||||||
torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) )
|
CondFunc('torch.cumsum', cumsum_fix_func, None)
|
||||||
|
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
|
||||||
|
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user